

RT & REMRT Shared Memory Parallel and Network

Distributed Ray-Tracing Programs

by Michael John Muuss

ARL-RP-429 April 2013

A reprint from the Fourth USENIX Computer Graphics Workshop,

Cambridge, MA, 9 October 1987.

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-RP-429 April 2013

RT & REMRT Shared Memory Parallel and Network

Distributed Ray-Tracing Programs

Michael John Muuss

Survivability/Lethality Analysis Directorate, ARL

A reprint from the Fourth USENIX Computer Graphics Workshop,

Cambridge, MA, 9 October 1987.

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2013

2. REPORT TYPE

Reprint

3. DATES COVERED (From - To)

9 October 1987
4. TITLE AND SUBTITLE

RT & REMRT Shared Memory Parallel and Network Distributed Ray-Tracing

Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael John Muuss

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SLB-S

Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-RP-429

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

A reprint from the Fourth USENIX Computer Graphics Workshop, Cambridge, MA, 9 October 1987.

14. ABSTRACT

The ray-tracing procedure is ideal for execution in parallel, both in tightly coupled shared-memory multiprocessors, as well as

loosely coupled ensembles of computers. RT, the ray-tracer in the Ballistics Research Laboratory Computer-Aided Design

(BRL-CAD) Package, takes advantage of both types of parallelism, using different mechanisms. The presentation will start with

a discussion of the structure of the ray-tracer, and the strategies used for operating on shared-memory multiprocessors such as

the Denelcor HEP, Alliant FX/8, and Cray X-MP.

The strategies used for dividing the work among network-connected loosely coupled processors will be presented. This will

include details of the dispatching algorithm, the distribution protocol designed, and a brief description of the “package” (PKG)

protocol which carries the distribution protocol. The presentation will conclude by investigating the performance issues of this

type of parallel processing, including a set of measured speeds on a variety of hardware.

15. SUBJECT TERMS

RT REMRT, retracing, parallel, LIBRT, BRL-CAD

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Clifford Yapp
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-1382

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

86

RT & REMRT
Shared Memory Parallel

and
Network Distributed

Ray-Tracing Programs

Michael John Muuss

Leader, Advanced Computer Systems Team
U. S. Army Ballistic Research Laboratory

Aberdeen Proving Ground
Maryland 21005-5066 USA

ABSTRACT

The ray-tracing procedure is ideal for execution in parallel, both in tightly coupled
shared-memory multiprocessors, as well as loosely coupled ensembles of comput
ers. RT, the ray-tracer in the BRL CAD Package, takes advantage of both types
of parallelism, using different mechanisms. The presentation will start with a dis
cussion of the structure of the ray-tracer, and the strategies used for operating on
shared-memory multiprocessors such as the Denelcor HEP, Alliant FX/8, and
Cray X-MP.

The strategies used for dividing the work among network connected loosely cou
pled processors will be presented. This will include details of the dispatching algo
rithm, the distribution protocol designed, and a brief description of the "package"
(PKG) protocol which carries the distribution protocol. The presentation will con
clude by investigating the performance issues of this type of parallel processing,
including a set of measured speeds on a variety of hardware .

1. Raytracing Background

The objective of a model analysis application determines the most natural form in which the
model might be interrogated . For example , extracting just the edges of the objects in a model
would be suitable for a program attempting to construct a wire-frame display of the model. Appli
cations also exist which need to be able to find the intersection between the paths of small objects
such as photons and the model. Interrogations such as these are motivated by a desire to simulate
physical processes, and each alternative is useful for a whole family of applications.

Most physical objects have a significant cross-sectional area. Mathematical rays, however,
have as their cross-section a point. Therefore, interrogating the model geometry with rays can
result in sampling inaccuracies . While recent research has begun to explore techniques for inter
secting cylinders, cones,l. 2 and planes with the model geometry, 3 ray-tracing is by far the most
well developed approach. Fortunately, most applications can function well with approximate, sam
pled data . Data with statistical validity can be obtained by sampling the model with an adequate
number of rays and computing the ray/geometry intersections . By choosing a ray sampling density
within the Nyquist limit, these applications are satisfied by extracting ray/geometry intersection
information, the well known "ray-tracing" algorithm. This approach is one of the easiest to imple
ment, as the one-dimensional nature of a mathematical ray makes the intersection equations rela
tively straightforward, even with combinatorial solid geometry (CSG) models .

Fourth USENIX Computer Graphics Workshop

The origins of modern ray-tracing come from work at MAGI under contract to BRL, ini
tiated in the early 1960s. Th~ initial results were reported by MAGI4 in 1967. Extensions to the
early developments were undertaken by a DoD Joint Technical Coordinating Group effort, result
ing in publications in 19705 and 1971 .6 A detailed presentation of the fundamental analysis and
implementation of the ray-tracing algorithm can be found in these two documents. They form an
excellent and thorough review of the principles of ray-tracing and solid modeling.

More recently, interest in ray-tracing developed in the academic community, with Kay•s7
thesis in 1979 being a notable early work. One of the central papers in the ray-tracing literature is
the work of Whitted. 8 Model sampling techniques can be improved to provide substantially more
realistic images by using the "Distributed Ray Tracing" strategy . 9 For an excellent, concise discus
sion of ray-tracing, consult pages 363-381 of Rogers . 10

There are several implementation strategies for interrogating the model by computing
ray/geometry intersections . The traditional approach has been batch-oriented, with the user defin
ing a set of "viewing angles", turning loose a big batch job to compute all the ray intersections,
and then post-processing all the ray data into some meaningful form. However, the major draw
back of this approach is that the application has no dynamic control over ray paths, making
another batch run necessary for each level of reflection, etc.

In order to be successful, applications need: (I) dynamic control of ray paths, to naturally
implement reflection , refraction , and fragmentation into multiple subsidiary rays, and (2) the abii
ity to fire rays in arbitrary directions from arbitrary points . Nearly all non-batch ray-tracing
implementations have a specific closely coupled application (typically a model of illumination),
which allows efficient and effective control of the ray paths. However, the most flexible approach
is to implement the ray-tracing capability as a general-purpose library, to make the functionality
available to any application as needed. This is the approach taken in the BRL CAD Package, II a
large modeling and analysis system based primarily on the ray-tracing of CSG solid models. The
ray-tracing library is called librt, while the ray-tracing application of interest here (an optical spec
trum lighting model) is called RT . This software is available from the author at no charge on a
non-redistribution basis.

2. The Structure of librt

In order to give all applications dynamic control over the ray paths, and to allow the rays to
be fired in arbitrary directions from arbitrary points, BRL has implemented its second generation
ray-tracing capability as a set of library routines. Librt exists to allow application programs to
intersect rays with model geometry. There are four parts to the interface: three preparation rou
tines and the actual ray-tracing routine. The first routine which must be called is rt_dirbuild(),
which opens the database file, and builds the in-core database table of contents. The second rou
tine to be called is rt_gettree(), which adds a database sub-tree to the active model space .
rt_gettree() can be called multiple times to load different parts of the database into the active
model space . The third routine is rt_prep(), which computes the space partitioning data structures
and does other initialization chores. Calling this routine is optional, as it will be called by
rt_shootray() if needed. rt_prep() is provided as a separate routine to allow independent timing of
the preparation and ray-tracing phases of applications .

To compute the intersection of a ray with the geometry in the active model space, the appli
cation must call rt_shootray() once for each ray . Ray-path selection for perspective, reflection,
refraction, etc, is entirely determined by the application program. The only parameter to the
rt_shootray() is a librt "application" structure, which contains five major elements: the vector
a_ray.r_pt(P) which is the starting point of the ray to be fired, the vector a_ray .r_dir (i)) which is
the unit-length direction vector of the ray, the pointer *a_hit() which is the address of an
application-provided routine to call when the ray intersects the model geometry, the pointer
*a_miss() which is the address of an application-provided routine to call when the ray does not hit
any geometry, the flag a_onehit which is set non-zero to stop ray-tracing as soon as the ray has
intersected at least one piece of geometry (useful for lighting models), plus various locations for
each application to store state (recursion level, colors, etc). Note that the integer returned from the

Fourth USENIX Computer Graphics Workshop

. :

87

88

application-provided a_hit()/a_miss() routine is the formal return of the function rt_shootray(). The
rt_shootray() function is prepared for full recursion so that the a_hit()/a_miss() routines can them
selves fire additional rays by calling rt_shootray() recursively before deciding their own return
value.

In addition, the function rt_shootray() is serially and concurrently reentrant, using only regis
ters, local variables allocated on the stack, and dynamic memory allocated with rt_malloc() . The
rt_malloc() function serializes calls to malloc(3) . By having the ray-tracing library fully prepared
to run in parallel with other instances of itself in the same address space, applications may take full
advantage of parallel hardware capabilities, where such capabilities exist.

3. A Sample Ray-Tracing Program

A simple application program that fires one ray at a model and prints the result is included
below, to demonstrate the simplicity of the interface to librt.

#include <brlcad/raytrace.h >
struct application ap;
main() {

}

rt_dirbuild("model.g");
rt_gettree("car");
rt_prep();
ap.a_point = [100, 0, 0];
ap.a_dir = [-1, 0, 0];
ap.a_hit = &hit_geom;
ap.a_miss = &miss_geom;
ap .a_onehit = I;
rt_shootray(&ap);

hit_geom(app, part)
struct application *app;
struct partition *part;
{

printf("Hit o/os", part->pt_forw->pt_regionp->reg_name);
}
miss_geom(){

printf("Missed");
}

4. Normal Operation: Serial Execution

When running the R T program on a serial processor, the code of interest is the top of the
subroutine hierarchy. The function main() first calls get_args() to parse any command line
options, then calls rt_dirbuild() to acquaint librt with the model database, and view_init() to initial
ize the application (in this case a lighting model, which may call mlib_init() to initialize the
material-property library). Finally, rt_gettree() is called repeatedly to load the model treetops.
For each frame to be produced, the viewing parameters are processed, and do_frame() is called.

Within do_frame(), per-frame initialization is handled by calling rt_prep(), mlib_setup(),
grid_setup(), and view_2init(). Then, do_run() is called with the linear pixel indices of the start
and end locations in the image; typically these values are 0 and width*length-1, except for the
ensemble computer case . In the non-parallel cases, the do_run() routine initializes the global vari
ables cur_pixel and last_pixel , and calls worker() . At the end of the frame, view_end() is called to
handle any final output, and print some statistics. ·

The worker() routine obtains the index of the next pixel that needs to be computed by incre
menting cur_pixel, and calls rt_shootray() to interrogate the model geometry. view_pixel() is
called to output the results for that pixel. worker() loops, computing one pixel at a time, until

Fourth USENIX Computer Graphics Workshop

cur _pixel > Last _pixel, after which it returns.

When rt_shootray() hits some geometry, it calls the a_hit() routine listed in the application
structure to determine the final color of the pixel. In this case, colorview() is called. colorview()
uses view_shade() to do the actual computation . Depending on the properties of the material hit
and the stack of .shaders that are being used,. various material-specific renderers may be called, fol
lowed by a call to rr_render() if reflection or refraction is needed. Any of these routines may
spawn multiple rays, and/or recurse on colorview() .

S. The Need for Speed

Images created using ray-tracing have a reputation for consuming large quantities of com
puter time . For complex models , 10 to 20 hours of processor time to render a single frame on a
DEC VAX-111780 class machine is not uncommon . Using the ray-tracing paradigm for engineer
ing analysis 12 often requires many times more processing than rendering a view of the model.
Examples of such engineering analyses include the predictive calculation of radar cross-sections,
heat flow , and hi-static laser reflectivity. For models of real-world geometry, running these ana
lyses aproaches the limits of practical execution times, even with modern supercomputers.

There are three main strategies that are being employed to attempt to decrease the amount of
elapsed time it takes to ray-trace a particular scene .

l) Advances in algorithms for ray-tracing. Newer techniques in partitioning spacel3 and in tak
ing advantage of ray-to-ray coherence 14 promise to continue to y'ield algorithms that do fewer
and fewer ray/object intersections which do not contribute to the final results. Significant
work remains to be done in this area, and an order of magnitude performance gain remains
to be realized . However, there is a limit to the gains that can be made in this area .

2) Acquiring faster processors . A trivial method for decreasing the elapsed time to run a pro
gram is to purchase a faster computer. However, even the fastest general-purpose computers
such as the Cray X-MP and Cray-2 do not execute fast enough to permit practical analysis of
all real-world models in appropriate detail. Furthermore, the speed of light provides an upper
bound on the fastest computer that can be built out of modern integrated circuits; this is
already a significant factor in the Cray X-MP and Cray-2 processors, which operate with 8.5
ns and 4.5 ns clock periods respectively .

3) Using multiple processors to solve a single problem. By engaging the resources of multiple
processors to work on a single problem, the speed-of-light limit can be circumvented. How
ever, the price is that explicit attention must be paid to the distribution of data to the various
processors, synchronization of the computations, and collection of the results.

For now, there are few general techniques for taking programs intended for serial operation
on a single processor, and automatically adapting them for operation on multiple processors. 15 The
Worm program developed at Xerox PARC 16 is one of the earliest known network image-rendering
applications. More recently at Xerox PARC, Frank Crow has attempted to distribute the render
ing of a single image across multiple processors, 17 but discovered that communication overhead
and synchronization problems limited parallelism to about 30% of the available processing power.
A good summary of work to date has been collected by Peterson .18

Ray-tracing analysis of a model has the very nice property that the computations for each
ray/model intersection are entirely independent of other ray/model intersection calculations.
Therefore, it is easy to see how the calculations for each ray can be performed by separate,
independent processors. The underlying assumption is that each processor has read-only access to
the entire model database. While it would be possible to partition the ray-tracing algorithm in
such a way as to require only a portion of the model database being resident in each processor, this
would significantly increase the complexity of the implementation as well as the amount of syn
chronization and control traffic needed. Such a partitioning has therefore not yet been seriously
attempted.

It is the purpose of the research reported in this paper to explore the performance limits of
parallel operation of ray-tracing algorithms where available processor memory is not a limitation.

Fourth USENIX Computer Graphics Workshop 89 ;jl
I;

"

90

While it is not expected that this research will result in a general purpose technique for distributing
arbitrary programs across multiple processors, the issues of the control and distribution of work
and providing reliable results in a potentially unreliable system are quite general. The techniques
used here are likely to be applicable to a large set of other applications .

6. Parallel Operation on Shared-Memory Machines

By capitalizing on the serial and concurrent reentrancy of the librt routines, 11 1s very easy to
take advantage of shared memory machines where it is possible to initiate multiple "streams of
execution" within the address space of a single process. In order to be able to ensure that global
variables are only manipulated by one instruction stream at a time, all such shared modifications
are enclosed in critical sections . For each type of processor , it is necessary to implement the rou
tines RES_ACQUIRE() and RES_RELEASE() to provide system-wide semaphore operations.
When a processor acquires a resource, and any other processors need that same resource, they will
wait until it is released , at which time exactly one of the waiting processors will then acquire the
resource .

In order to minimize contention between processors over the critical sections of code, all crit
ical sections are kept as short as possible: typically only a few lines of code. Furthermore, there
are differen.t semapho~es for each type of resource accessed in critical sections . res_sysca/1 is used
to interlock all UNIX system calls and some library routines, such as write() , malloc(), printf(),
etc. res_worker is used by the function worker() to serialize access to the variable cur_pixel, which
contains the index of the next pixel to be computed. res_results is used by the function view _pixel
to serialize access to the result buffer. This is necessary because few processors have hardware
multi-processor interlocking on byte operations within the same word. res_model is used by the
spline library (libspl) routines to serialize operations which cause the model to be further refined
during the raytracing process , so that data structures remain consistent.

Application of the usual client-server model of computing would suggest that one stream of
execution would be dedicated to dispatching the next task, while the rest of the streams of execu
tion would be used for ray-tracing cornputations. However, in this case , the dispatching operation
is trivial and a "self-dispatching" algorithm is used, with a critical section used to protect the
shared variable cur_pixel. The real purpose of the function do_run() is to perform whatever
machine-specific operation is required to initiate npsw streams of execution within the address
space of the R T program, and then to have each stream call the function worker(), each with
appropriate local stack space .

Each worker() function will loop until no more pixels remain , taking the next available pixel
index . For each pass through the loop, RES_ACQUIRE(res_worker) will be used to acquire the
semaphore , after which the index of the next pixel to be computed, cur _pixel, will be acquired and
incremented , and before the semaphore is released, ie,

worker() {
while(I) {

RES_ACQUIRE(&rt_g .res_worker);
my _index = cur _pixel++;
RES_RELEASE(&rt_g.res_worker);
if(my_index > last_pixel)

break;
a .a_x = my_index%width;
a .a_y = my_indexlw!dth;
... compute ray parameters . . .
rt_shootray(&a) ;

* UNIX is a trademark of Bell Labs .

Fourth USENIX Computer Graphics Workshop

On the Denelcor HEP H-1000 each word of memory has a full/empty tag bit in addition to 64
data bits. RES_ACQUIRE is implemented using the Daread() primitive, which uses the hardware
capability to wait until the semaphore word is full, then read it, and mark it as empty.
RES_RELEASE is implemented using the Daset() primitive, which marks the word as full .
do_run() starts additional streams of execution using the Dcreate(worker) primitive, which creates
another stream which immediately calls the worker() function.

On the Alliant FX/8, RES_ACQUIRE is implemented using the hardware instruction test
and-set (T AS) which tests a location for being zero. If the location is zero, it atomically sets it
non-zero and sets the condition codes appropriately. RES_ACQUIRE embeds this test-and-set
instruction in a polling loop to wait for acquisition of the resource . RES_RELEASE just zeros the
semaphore word. Parallel execution is achieved by using the hardware capability to spread a loop
across multiple processors, so a simple loop from 0 to 7 which calls worker() is executed in
hardware concurrent mode . Each concurrent instance of worker() is given a separate stack area in
the "cactus stack".

On the Cray X-MP and Cray-2, the Cray multi-tasking library is used . RES_ACQUIRE
maps into LOCKON, and RES_RELEASE maps into LOCKOFF, while do_run() just calls
TSKSTART(worker) to obtain extra workers.

7. Distributed Operation on Loosely-Coupled Ensembles

7 .1. Assumptions

The basic assumption of this design is that network bandwidth is modest, so that the number
of bytes and packets of overhead should not exceed the number of bytes and packets of results.
The natural implementation would be to provide a remote procedure call (RPC) interface to
rt_shootray(), so that when additional subsidiary rays are needed, more processors could poten
tially be utilized. However, measurements of this approach on VAX, Gould, and Alliant comput
ers indicates that the system-call and communications overhead is comparable to the processing
time for one ray/model intersection calculation. This much overhead rules out the RPC-per-ray
interface for practical implementations. On some tightly coupled ensemble computers, there might
be little penalty for such an approach, but in general, some larger unit of work must be exchanged.

It was not the intention of the author to develop another protocol for remote file access, so
the issue of distributing the model database to the RTSR V server machines is handl~d outside of
the context of the REMRT/RTSRV software . In decreasing order of preference, the methods for
model database distribution that are currently used are Sun NFS, Berkeley RDIST, Berkeley RCP,
and ordinary DARPA FTP. Note that the binary databases need to be converted to a portable for
mat before they are transmitted across the network, because R TSR V runs on a wide variety of pro
cessor types. Except for the model databases and the executable code of the RTSR V server pro
cess itself, no file storage is used on any of the server machines.

7 .2. Distribution of Work

The approach used in REMR T involves a single dispatcher process, which communicates
with an arbitrary number of server processes. Work is assigned in groups of scanlines. As each
server finishes a scanline, the results are sent back to the dispatcher, where they are stored. Com
pleted scanlines are removed from the list of scanlines to be done and from the list of scanlines
currently assigned to that server. Different servers may be working on entirely different frames.
Before a server is assigned scanlines from a new frame, it is sent a new set of options and
viewix>int information.

The underlying communications layer used in the current implementation is the package
(PKG) protocol, from the libpkg library. The PKG protocol is layered on top of the DARPA
Transmission Control Protocol (TCP), so that all communications are known to be reliable, and
communication disruptions are noticed . Whenever the dispatcher is notified by the libpkg routines
that contact with a server has been lost, all unfinished scanlines assigned to that server will be
requeued at the head of the "work to do" queue, so that it will be assigned to the very next

Fourth USENIX Computer Graphics Workshop

"' I

91

92

available server, allowing tardy scan lines to be finished quickly.

7 .3. Distribution Protocol

When a server process RTSR V is started , the host name of the machine running the
dispatcher process is given as a command line argument. The server process can be started from a
command in the dispatcher REMRT , which uses system(3) to run the RSH program, or directly via
some other mechanism . This avoids the need to register the RTSRV program as a system network
daemon and transfers issues of access control, permissions , and accounting onto other, more
appropriate tools . Initially, the RTSR V server initiates a PKG connection to the dispatcher process
and then enters a loop reading commands from the dispatcher . Some commands generate no
response at all , some generate one response message, and some generate multiple response mes
sages. However, note that the server does not expect to receive any additional messages from the
dispatcher until after it has finished processing a request , so that requests do not have to be buf
fered in the server . While this simplifies the code, it has some performance implications, which
are discussed later .

In the first stage , the message received must be of type MSG_START, with string parameters
specifying the pathname of the model database and the names of the desired treetops. If all goes
well, the server responds with a MSG_START message, otherwise diagnostics are returned as
string parameters to a MSG_PRINT message and the server exits.

In the second stage, the message received must be of type MSG_OPTIONS or
MSG_MATRIX . MSG_OPTIONS specifies the image size and shape, hypersampling, stereo view
ing, perspective -vs- ortho view, and control of randomization effects (the "benchmark" flag) ,
using the familiar UNIX command line option format. MSG_MATRIX contains the 16 ASCII
floating point numbers for the 4x4 homogeneous transformation matrix which represents the
desired view .

In the third stage, the server waits for messages of type MSG_LINES, which specify the
starting and ending scanline to be processed . As each scanline is completed, it is immediately sent
back to the dispatcher process to minimize the amount of computation that could be lost in case of
server failure or communications outage. Each scanline is returned in a message of type
MSG_PIXELS. The first two bytes of that message contain the scan line number in binary, least
significant byte first. Following that is the 3*width bytes of RGB data that represents the scanline.
When all the scanlines specified in the MSG_LINES command are processed , the server again
waits for another message , either another MSG_LINES command or a
MSG_OPTIONS/MSG_MATRIX command to specify a new view .

At any time, a MSG_RESTART message can be received by the server, which indicates that
it should close all it's files and immediately re-exec(2) itself, either to prepare for processing an
entirely new model , or as an error recovery aid . A MSG_LOGLVL message can be received at
any time, to enable and disable the issuing of MSG_PRINT output. A MSG_END message sug
gests that the server should commit suicide , courteously .

7 .4. Dispatching Algorithm

The dispatching (scheduling) algorithm revolves around two main lists, the first being a list
of currently connected servers and the second being a list of frames still to be done . For each
unfinished frame , a list of scan lines remaining to be done is also maintained . For each server, a
list of the currently assigned scanlines is kept. Whenever a server returns a scanline, it is removed
from the list of scan lines assigned to that server, stored in the output image , and also in the
optional attached framebuffer . (It can be quite entertaining to watch the scan lines racing up the
screen, especially wnen using processors of significantly different speeds). If the arrival of this
scanline completes a frame. then the frame is written to disk on the dispatcher machine, timing
data is computed , and that frame is removed from the list of work to be done .

When a server finishes the last scanline of it s assignment and more work remains to be done,
the list of unfinished frames is searched and the next available increment of work is assigned.

Fourth USENIX Computer Graphics Workshop

--- -- --- ---- -

Work is assigned in blocks of consecutive scanlines, up to a per-server maximum assignment size.
The block of scanlines is recorded as the server 's new assignment and is removed from the list of
work to be done.

7 .S. Reliability Issues

If the libpkg communications layer looses contact with a server machine , or if REMRT is
manually told to drop a server, then the scan lines remaining in the assignment are requeued at the
head of the list of scanlines remaining for that frame . They are placed at the head of the list so
that the first available server will finish the tardy work, even if it had gone ahead to work on a
subsequent frame .

Presently, adding and dropping server machines is a manual (or script driven) operation. It
would be desirable to develop a separate machine-independent network mechanism that REMRT
could use to inquire about the current loading and availability of server machines, so that periodic
status requests could be made and automatic reacquisition of eligible server machines could be
attempted. Peterson's Distrib18 System incorporates this as a built-in part of the distributed com
puting framework , but it seems that using an independent transaction-based facility such as
Pistritto's Host Monitoring Protocol (HMP) facility 19 would be a more general solution.

If the dispatcher fails, all frames that have not been completed are lost; on restart, execution
resumes at the beginning of the first uncompleted frame. By carefully choosing a machine that has
excellent reliability to run the dispatcher on, the issue of dispatch~r failure can be largely avoided.
However, typically no more than two frames will be lost , minimizing the impact. For frames that
take extremely long times to compute, it would be reasonable extend the dispatcher to snapshot the
work queues and partially assembled frames in a disk file, to permit operation to resume from the
last "checkpoint".

7 .6. PKG Protocol

The "package" (PKG) protocol is layered on top of a virtual circuit provided by the native
operating system, and insulates programmer fr:f£1 the networking details. The PKG protocol
allows exchange of messages of any size (up to 2 -1 bytes), with. automatic allocation of sufficient
dynamic memory on the receiving end, and supports a mix of synchronous and asynchronous mes
sage paradigms.

Typically, PKG is layered on top of a TCP connection, although PKG has also been run over
DECNET and X.25. While multiple PKG connections per process are supported; only the
dispatcher processes makes use of this feature in this application. When using TCP, the TCP
option SO_KEEPALIVE is enabled so that all communications failures and remote system failures
will be noticed by the TCP layer after an appropriate time interval, avoiding the need for
application-level timeouts. Libpkg handles the incremental aggregation of received data into full
messages. The Berkeley UNIX select(3) system call provides the ability to easily handle asynchro
nous communications traffic on multiple connections.

libpkg Routines
pkg,_open Open net conn to host
pkg,_permserver Be perm an ant server, and listen
pkg,_transerver Be transient server, and listen
pkg,_getclient Server: accept new connection
pkg, close Close net connection
pkg, send Send message

pkg,_ waitfor Get specific msg, do others
pkg,_bwaitfor Get specific msg, user buffer
pkg,_get Read bytes, assembling msg
pkg_ block Wait for full msg to be read

Fourth USENIX Computer Graphics Workshop

.,,

93

·.

94

8. Performance Measurements

An important part of the BRL CAD Package is a set of four benchmark model databases and
associated viewing parameters, which permit the relative performance of different computers and
configurations to be made using a significant production program as the basis of comparison. For
the purposes of this paper, just the "Moss" database will be used for comparison . Since this bench
mark generates pixels the fastest, it will place the greatest demands on any parallel processing
scheme. The benchmark image is computed at 512x512 resolution .

8.1. Shared·Memory Performance

The relative performance figures for running RT in the parallel mode with Release 1.20 of
the BRL CAD Package are presented below. The Alliant FX/8 machine was brl-vector.arpa, con
figured with 8 Computational Elements (CEs), 6 68012 Interactive Processors (IPs), 32 Mbytes of
main memory, and was running Concentrix 2.0, a port of 4.2 BSD UNIX . The Cray X-MP/48
machine was brl-patton.arpa, serial number 213 , with 4 processors, 8 Mwords of main memory,
with a clock period of 8.5 ns, and UNICOS 2.0, a port of System V UNIX . Unfortunately, no
comprehensive results are available for the Denelcor HEP, the only other parallel computer known
to have run this code.

Parallel RT Speedup -vs- # of Processors

Processors I 2 3 4 5 6 7 8

Alliant FX/8 1.00 1.84 2.79 3.68 4.80 5.70 6.50 7.46
(efficiency) 100% 92 .0% 93 .0% 92 .0% 96.0% 95 .0% 92 .9% 93 .3%

Cray X-MP/48 1.00 1.99 2.96 3.86
(efficiency) 100% 99.5% 98.7% 96.5%

The multiple-processor performance of RT increases nearly linearly for shared memory
machines with small collections of processors. The slight speedup of the Alliant when the fifth
processor is added comes from the fact that the first four processors share one cache memory,
while the second four share a second cache memory . To date, RT holds the record for the best
achieved speedup for parallel processing on both the Cray X-MP/48 and the Alliant. Measure
ments on the HEP, before it was dismantled, indicated that near-linear improvements continued
through 128 streams of execution. This performance is due to the fact that the critical sections are
very small, typically just a few lines of code, and that they account for an insignificant portion of
the computation time . When RT is run in parallel and the number of processors is increased, the
limit to overall performance will be determined by the total bandwidth of the shared memory, and
by memory conflicts over popular regions of code and data .

8.2. Distributed REMRT Performance

Ten identical Sun-3/50 systems were used to test the performance of REMRT . All had 68881
floating point units and 4 Mbytes of memory, and all were in normal timesharing mode, unused
except for running the tests and the slight overhead imposed by /etc/update, rwhod, etc . To pro
vide a baseline performance figure for comparison, the benchmark image was computed in the nor
mal way using RT, to avoid any overhead which might be introduced by REMRT. The elapsed
time to execute the ray-tracing portion of the benchmark was 2639 seconds; the preparation phase
was not included, but amounted to only a few seconds .

Fourth USENIX Computer Graphics Workshop

REMRT Speedup -vs- #of Processors
Ratios Elapsed Seconds

CPUs Theory Sun-3/50 Theory Sun-3/50 Total Speedup Efficiency
l 1.0000 1.0072 2639.0 2658 0.993 99.3%
2 0 .5000 0.5119 1319.5 1351 1.953 97 .7%
3 0.3333 0.3357 879.6 886 2.979 99.3%
4 0.2500 0.2524 659.7 666 3.949 98.7%
5 0.2000 0 2027 527.8 535 4.916 98.3%
6 0. 1666 0.1686" 429.8 445 5.910 98.5%
7 0. 1429 0.1470 377.0 388 6.778 96.8%
8 0. 1250 0.1266 329.9 334 7.874 98.4%
9 0.1111 0. 1133 293 .2 299 8.796 97.7%
10 0.1000 0. 1019 263.9 269 9.777 97.8%

The "speedup" figure of 0.993 for I CPU shows the loss of performance of 0. 7% introduced
by the overhead of the REMRT/RTSR V communications, versus the non-distributed RT perfor
mance figure. The primary result of note is that the speedup of the REMRT network distributed
application is very close to the theoretical maximum speedup, with a total efficiency of 97.8% for
the ten Sun case! The very slight loss of performance noticed (2.23%) is due mostly to "new
assignment latency", discussed further below. Even so, it is worth noting that the speedup
achieved by adding processors with REMR T was even better than the performance achieved by
adding processors in parallel mode with R T. This effect is due mostly to the lack of memory and
semaphore contention between the REMRT machines.

Unfortunately, time did not permit configuring and testing multiple AJiiants running R TSR V
in full parallel mode, although such operation is supported by RTSR ~~·

When REMRT is actually being used for producing images, many different types of proces~
sors can be used together. The aggregate performance of all the available machines on a campus
network is truly awesome, especially when a Cray or two is included! Even in t~is case, the net
work bandwidth required does not exceed the capacity of an Ethernet (yet). The bandwidth
requirements are sufficiently small that it is practical to run many RTSR V processes distributed
over the ARPANET/MILNET. On one such occasion in early 1986, 13 Gould PN9080 machines
were used all over the east coast to finish some images for a publicatidn de~dlini?',. ""'!, • · ''

9. Performance Issues

The policy of making work assignments in terms of multiple adjacent scanlines reduces the
processing requirements of the dispatcher and also improves the efficiency of the servers. As a
server fmishes a scanline, it can give the scanline to the local operating system to send to the
dispatcher machine, while the server continues with the computation, allowing the transmission to
be overlapped with more computation. When gateways and wide-area networks are involved (with
their accompanying increase in latency and packet loss), this is an important consideration. In the
current implementation, assignments are always blocks of three scanlines because there is no gen
eral way for the R TSR V process to know what k-ind of machine it. is running on and how fast it is
likely to go. Clearly, it would be worthwhile to assign larger blocks of scanlines to the faster pro
cessors so as to minimize idle time and control traffic overhead. Seemingly the best way to deter
mine this would be to measure the rate of scanline completion and dynamically adjust the alloca
tion size. This is not currently implemented.

By increasing the scanline block assignment size for the faster processors, the amount of time
the server spends waiting for a new assignment (termed "new assignment latency") will be dimin
ished, but not eliminated. Because the current design assumes that the server will not receive
another request until the previous request has been fully processed, no easy solution exists.
Extending the server implementation to buffer at least one ·additional request would permit this
limitation to be overcome, and the dispatcher would then have the option of sending a second
assignment before the first one had completed, to always keep the server "pipeline" full. For the

Fourth USENIX Computer Graphics Workshop 95

96

case of very large numbers of servers, this pipelining will be important to keep delays in the
dispatcher from affecting performance . In the case of very fast servers, pipelining will be important
in achieving maximum server utilization, by overcoming network and dispatcher delays .

To obtain an advantage from the pipeline effect of the multiple scanline work assignments, it
is important that the network implementations in both the servers and the dispatcher have adequate
buffering to hold an entire scan line (typically 3K bytes) . For the dispatcher, it is a good idea to
increase the default TCP receive space (and thus the receive window size) from 4K bytes to 16K
bytes . For the server machines, it is a good idea to increase the default TCP transmit space from
4K bytes to 16K bytes. This can be accomplished by modifying the file /sys/netinet/tcp_usrreq.c to
read :

int tcp_sendspace = 1024*16;
int tcp_recvspace = 1024* 16;

or to make suitable modifications to the binary image o(your kernel using adb(I) :

adb -w -k /vmunix
tcp_sendspace?VV Ox4000
tcp_recvspace?VV Ox4000

The dispatcher process must maintain an active network connection to each of the server
machines. In all systems there is some limit to the number of open files that a single process may
use (symbol NOFILE); in 4 .3 BSD UNIX , the limit is 64 open files . For the current implementa
tion, this places an upper bound on the number of servers that can be used. As many campus net
works have more than 64 machines available at night, it would be nice if this limit could be eased.
One approach is to increase the limit on the dispatcher machine . Another approach is to imple
ment a special "relay server" to act as a fan-in/fan-out mechanism, although the additional latency
could get to be an issue. A third approach is to partition the problem at a higher level. For exam
ple, having the east campus do the beginning of a movie, and the west campus do the end would
reduce the open file problem. Additionally, if gateways are involved, partitioning the problem
may be kinder to your campus network .

10. Conclusions

Parallel computing is good.

VVhen operation in a shared memory parallel environment is an initial design goal, imple
menting concurrently reentrant code does not significantly increase the complexity of the software.
Having such code allows direct utilization of nearly any shared memory multiprocessor with a
minimum of system-specific support, namely the RES_ACQUIRE and RES_RELEASE semaphore
operations, and some mechanism for starting multiple streams of execution within the same address
space.

Network distributed computing need not be inefficient or difficult . The protocol and
dispatching mechanism described in the preceding sections has been shown to be very effective at
taking the computationally intensive task of generating ray-traced images and distributing it across
multiple processors connected only by a communications network . There are a significant number
of other application programs that could directly utilize the techniques and control software imple
mented in REMRT to achieve network distributed operation . However, the development and
operation of this type of program is still a research effort; the technology is not properly packaged
for widespread, everyday use. Furthermore, it is clear that the techniques used in REMRT are not
sufficiently general to be ·applied to all scientific problems . In particular, problems where each
"cell" has dependencies on some or all of the neighboring cells will require different techniques .

Massive proliferation of computers is a trend that is likely to continue through the 1980s into
the 1990s and beyond . Developing software to utilize significant numbers of network connected
processors is the coming challenge . This paper has presented a strategy that meets this challenge,
and provides a simple, powerful, and efficient method for distributing a significant family of scien
tific analysis codes across multiple computers .

Fourth USENIX Computer Graphics Workshop

--------- ------- - ---------

(

I. J . Amanatides, "Ray Tracing with Cones," Computer Graphics (Proceedings of Siggraph '84)
18(3) (July 19~4).

2. D. B. Kil.'k, ''The Simulation of Natural Features· Using Cone Tracing," pp. 129-144 in
Advanced Computer Graphics, ed. T. L. Kunii, Springer-Verlag (1986). . '

3. J. T. Kajiya, "New Techniques for Ray Tracing Procedurally Defined Objects," Transactions
ofGraphics 2(3), pp. 161-181 (July 1983).

4. MAGI Inc, A Geometric Description Technique Suitable for Computer Analysis of Both Nuclear
and Conventional Vulnerability of Armored Military Vehicles, MAGI Report 6701, AD847576
(August 1967).

5. Joint Technical Coordinating Group for Munitions Effectiveness, MAGIC Computer Simula
tion, Vol. I , User Manual, 61JTCG/ME-71-7-l (July 1970).

6. Joint Technical Coordinating Group for Munitions Effectiveness, MAGIC Computer Simula
tion, Vol. 2, Analyst Manual, 61JTCG/ME-71-7-2-l (May 1971).

7. D. S. Kay, Transparency, Refraction, and Ray Tracing for Computer Synthesized Images, CorJ
nell Univ (Jan 1979).

8. J. T. Whitted, "An Improved Illumination Model for Shaded Display," Communications of
the ACM 23(6), pp. 343-349 (June 1980).

9. Cook, Porter, Carpenter, "Distributed Ray Tracing," Computer Graphics (Proceedings of Sig-
graph '84) 18(3) , pp. 137-145 (July 1984). ·

10. D. F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill, New York (1985) .

11. M. J . Muuss, P. Dykstra, K. Applin, G. Moss, E . Davisson, P. Stay, C. Kennedy, Ballistic
Research Laboratory CAD Package, Release 1.21, BRL Internal Publication (June 1987) .

12. M. J . Muuss, "Understanding the Preparation and Analysis of Solid Models," in Techniques
for Computer Graphics, ed . D. A. Rogers_. R . A. Earnshaw, Springer-Verlag (1987).

13. M. R. Kaplan, Space-Tracing, a Constant Time Ray-Tracer, Siggraph '85 Tutorial "State of
the Art in Image Synthesis", San Francisco CA (July 22-26, 1~85).

14. J . Arvo, D. Kirk , "Fast Ray Tracing by Ray Classification," Computer Graphics (Proceedings
of Siggraph '87) 21(4) (July 1987).

15. S. Ohr, "Minisupercomputers Mix Vector Speed, Scalar Flexibility," Electronic Design 34(5),
pp. 107-114 (March 1986) .

16. J. F. Shoch, J. A. Hupy. ''The Worm Programs-- Early Experience with a Distributed Com
putation," Communiclitions of the ACM 25(3), p. 172 (March 1982) .

17. F. C. Crow, Ex(eriences in Distributed Execution: A Report on Work in Progress, Siggraph '86
Tutorial "Advanced Image Systhesis", Dallas, TX (August 1986.).

18. J . W. Peterson, Distributed Computation for Computer Animation, University of Utah Techni
cal Report UUCS 87-014 (June 1987).

19. R. Natalie, M. J. Muuss, D. Kingston, C. Kennedy, D. Gwyn, The First BRL VAX UNIX
Manual , BRL Internal Publication (Fall 1984) .

Fourth USENIX Computer Graphics Workshop 97

NO. OF

COPIES ORGANIZATION

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 8725 JOHN J KINGMAN RD

 STE 0944

 FORT BELVOIR VA 22060-6218

 1 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 732 N CAPITOL ST NW

 WASHINGTON DC 20401

 1 USARL

 (PDF) RDRL SLE

 R FLORES

 WSMR NM 88002-5513

ABERDEEN PROVING GROUND

 1 DIR US ARMY EVALUATION CTR HQ

 (HC) TEAE SV

 P A THOMPSON

 2202 ABERDEEN BLVD 2ND FL

 APG MD 21005-5001

 3 DIR USARL

(2 HC RDRL SL

1 PDF) J BEILFUSS

 P TANENBAUM

 RDRL SLB A

 M PERRY (PDF only)

 7 RDRL SLB

 (6 HC G KUCINSKI

 1 PDF) RDRL SLB S

 S SNEAD (5 CPS)

 C YAPP (1 PDF)

 4 QUANTUM RSRCH INTRNTL

 (HC) C HORTON

 STE 203

 2014 TOLLGATE RD

 BEL AIR MD 21015

INTENTIONALLY LEFT BLANK.

