Simulation of Blast on Porcine Head

by Yolin Huang
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Simulation of Blast on Porcine Head

by Yolin Huang

Weapons and Materials Research Directorate, ARL
Abstract

Shock tube blast on porcine head experimental data, including incident pressure, surface pressure, intracranial pressure, and cranial acceleration, has been compared with simulation using ALE3D. Other physical variables (coup-contrecoup pressure profile, vaporization pressure, skull strain, strain in brain, effective stress, deviatoric strain energy, Löwenhielm vein injury criterion, viscous injury criterion, linear acceleration, and angular acceleration) in the simulations do not have corresponding test data for comparison; they are discussed in association with their injury instigation implications with references to other published findings. The effect of variation of shear modulus based on published measurement data for the brain on impact response is discussed. Furthermore, some nuances about the shock tube simulation are discussed. With progress in geometry-conforming meshing technique, in noninvasive high-rate properties, and in development in material models, further advances in simulation fidelity will emerge. They will help in early diagnosis, treatment, and prevention of brain injury.

Subject Terms

traumatic brain injury, TBI, blast head pig, ALE3D, simulation
Contents

List of Figures v

List of Tables vii

Acknowledgments viii

1. Introduction 1

2. Material Models 2
 2.1 Soft Tissue 2
 2.2 Brain 3
 2.3 Skull 3

3. The Simulation Setup 4

4. Comparison with Experimental Data 6
 4.1 Comparison with Measured Pressure Trace near the Tube Exit 6
 4.2 Comparison with Measured Porcine Head Surface Pressure 8
 4.3 Comparison with Measured Intracranial Pressure 12
 4.4 Comparison with Measured Acceleration Data 17

5. Additional Calculated Variables 20
 5.1 The Coup and Contrecoup Profile 20
 5.2 The Deformation of the Skull 24
 5.3 Strain in the Brain 25
 5.4 The Effective Stress (von Mises Stress) 26
 5.5 Deviatoric Strain Energy 27
 5.6 Löwenhielm Vein Injury Criterion 28
 5.7 Viscous Injury Criterion 30
 5.8 Linear Accelerations 31
 5.9 Angular Acceleration 32
6. **Discussion**

6.1 Shear Modulus for the Brain 33
6.2 The Acceleration of the Head 36
6.3 Other Simulation Work Comparison 37
6.4 Material Properties 40
6.5 Medical Imaging 40
6.6 Gender Difference 40

7. **Summary and Conclusion** 41

8. **References** 42

Appendix. Shock Tube Simulation 55

List of Symbols, Abbreviations, and Acronyms 65

Distribution List 66
List of Figures

Fig. 1 Mesh configuration for the shock tube and the space around the test object...5

Fig. 2 Comparison of pressure history traces at different tracer locations in simulation. The line marked test is the measured pressure data from the experiment. The locations of the tracers are shown in Fig. 3.7

Fig. 3 Porcine head outside the exit of the shock tube...9

Fig. 4 Locations of tracers mentioned in the various sections (Z = –2 plane)...10

Fig. 5 Locations of the tracers in the coarser mesh (Z = –2 plane).........................11

Fig. 6 Simulated surface pressures (fine mesh) compared with the measured surface pressure (right face)..12

Fig. 7 The history of the intracranial pressures (fine mesh) compared with the measured pressures during tests. However, the piezo-resistive pressure transducers will not be able to pick up negative (abs) pressure values. ..13

Fig. 8 Intracranial pressure on the right side. Test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.14

Fig. 9 Intracranial pressure at the center location. The test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.15

Fig. 10 Intracranial pressure on the left side. The test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.16

Fig. 11 History of the X coordinates of the tracer points: ticpr, ticpc, and ticpl (fine mesh)..17

Fig. 12 History of the cranial acceleration. Inset shows the close-up around the spike. The tracer tac1 corresponds to the location of the accelerometer in the tests. The tracer ticpc is inside the brain and has no corresponding experimental measurement data..........................18

Fig. 13 History of the cranial acceleration. The tracer tac1 corresponds to the location of the accelerometer in the experiments.19

Fig. 14 History of the cranial acceleration. The tracer ticpc is inside the brain and has no corresponding experimental measurement data (the line marked test is the same as previous—at the accelerometer location). .20

Fig. 15 Regions in color at 4,500 µs have pressure above 3 bar (abs). Finite element mesh shows the brain and eyes of the pig.........................21

Fig. 16 Regions in color at 5,000 µs have pressure (abs) below 1 bar (~1 atm)..22
Fig. 17 Regions in color at 5,000 μs have pressure below 0.07 bar (abs), where the cavitation may ensue.................................23
Fig. 18 Mean strain across the cranium...24
Fig. 19 Regions in color at 9,800 μs have equivalent strain greater than 0.15 26
Fig. 20 Regions in color at 9,800 μs have von Mises stress greater than 7.8e-2
bar (7.8 kPa)..27
Fig. 21 Regions in color at 9,800 μs have deviatoric strain energy greater than
1.e-3 bar-cc/cc (1.e-4 J/cm3) (threshold not established yet)...............28
Fig. 22 Regions in color at 9,800 μs have $\left(\frac{\varepsilon}{\varepsilon_{\text{critical}}}
ight)$ greater than 0.015. It may
increase with time ..29
Fig. 23 Regions in color at 9,800 μs have VC or $\varepsilon \cdot \varepsilon$ greater than 1.4e-
5/\mu s..31
Fig. 24 History of the intracranial pressures where the shear modulus is 22.53
kPa...34
Fig. 25 History of the equivalent strain at the ticpr tracer location for different
 shear moduli (22.53, 13, 3 kPa)..35
Fig. 26 History of the von Mises stress at the ticpr tracer location for different
 shear moduli (22.53, 13, 3 kPa). ..36
Fig. 27 Acceleration in the head with different shear moduli37
Fig. 28 Region in color at 4,600 μs has the equivalent strain rate in the porcine
brain greater than 50/s...39
Fig. A-1 Pressure history at the center of the shock tube exit. (The time scale is
stretched around the impact time.) ..56
Fig. A-2 Pressure profile over the cross section for 3 different mesh
configurations around the shock wave exit (in 2-D simulation) at 4,800
μs..57
Fig. A-3 Pressure histories at locations along the shock tube near the tube
wall..58
Fig. A-4 Pressure histories at locations along the centerline of the shock tube .59
Fig. A-5 Pressure profile along the centerline of the 3-D and 2-D shock tubes at
different times ...60
Fig. A-6 Pressure profile next to the tube wall of the 3-D and 2-D shock tubes at
different time...61
Fig. A-7 Pressure profile at 5,500 μs around the shock tube exit in elevation
plot ..62
Fig. A-8 Pressure profile over the cross section for 3 different time around the
shock wave exit (in 3-D simulation)..63
Fig. A-9 Difference in the pressure profiles between the 3-D and the 2-D
simulations ..64
List of Tables

Table 1 Material parameters in the model ..4
Table 2 Derived variables ...4
Table 3 Coefficients for the Grüneisen form of the equation of state.................4
Table 4 Pressure in the shock tube...7
Table 5 Brain material parameters ...33
Table A-1 Parameters for Fig. A-1...56
Table A-2 Parameters in the 2-D simulation..58
Table A-3 Parameters in the 3-D simulation..60
Acknowledgments

The author would like to thank Drs Rich Becker and Michael Kleinberger for consultation and comprehensive review, and Drs Sikhanda Satapathy and Chris Hoppel for critiques and comments. The author would also like to thank Drs Raul Radovitzky (Massachusetts Institute of Technology) and Cameron “Dale” Bass (Duke University) for correspondence on their US Army Research Laboratory—funded programs.
1. Introduction

Explosive blast accounts for over 63% of combat casualties, and 20% of the deployed force potentially suffer from traumatic brain injury (TBI) (DePalma et al. 2005; Hoge et al. 2008; Ling et al. 2009; Rosenfeld and Ford 2010; Theeler and Jackson 2012). Bomb blasts accounts for 82% of all injuries caused by terrorists worldwide (Champion et al. 2009; Covey and Born 2010; Capehart and Bass 2012). To find mitigation countermeasures and treatment methods (Margulies et al. 2009), the shock tube is a frequently used lab tool. The shock tube provides controllable and a repeatable shock pressure wave (Richmond and White 1966; Martinez 1999; Bauman et al. 2009; Long et al. 2010; Kleinschmit 2011; Stuhmiller 2011; Varas 2011; Panzer 2012; Reneer 2012; Zhu et al. 2012; Courtney et al. 2014). Shock tubes of various cross-sectional sizes and shapes and various tube lengths have been designed for tests on assorted vehicles, equipment, and animals large and small.

Animals tested include mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, goats, sheep, burros, swine, monkeys, and cattle for tests to find eardrum failure threshold, lung damage threshold, and lethality threshold. Scaling models have been developed to find a survivable over-pressure range from test data with animals (Bowen et al. 1968; Bass et al. 2008; Courtney et al. 2011; Panzer et al. 2011; Jean et al. 2014). Using animal models to study brain injury, the characteristics of the brain anatomy need to be considered. Among the animals tested, the porcine brain has unique characteristics: It is gyrencephalic with a gyrification index similar to that of the human brain (Neal et al. 2007; Zilles et al. 2013; Lewitus et al. 2014). The porcine gray matter to white matter ratio is also similar to the human ratio (Zhang and Sejnowski 2000; Bush 2003; Winter 2011). Therefore, animal models with porcine brains should have greater relevancy to the human brain injury research (Finnie and Blumberg 2002; Cernak 2005; Manley et al. 2005; Swindle et al. 2012).

A series of experiments applying a blast wave from a shock tube for pressure loading on porcine heads has been conducted at Duke University (Shridharani 2012). This report describes the simulation work to study the porcine head response. The simulation uses the ALE3D code (LLNL 2014). In the following sections, the material models are discussed first, then the mesh setup for the simulations, followed by the simulation results for comparison, and finally other calculated physical quantities are presented. The objective is to attain insight into the experiments conducted at Duke University and understand the loading associated with blast-related brain injury mechanics.
2. Material Models

2.1 Soft Tissue

A newly implemented, compressible version of the Mooney-Rivlin model (Becker 2014) is used for soft tissue. This nonlinear hyperelastic model is not tied to any particular equation of state; any equation of state in the ALE3D package for the pressure may be used. The constitutive relation for the deviatoric part, S, of the Cauchy stress tensor is given by

$$S = \frac{\mu_0}{J} \left[\omega_0 \text{dev} \mathbf{B} - (1 - \omega_0) \text{dev} (\mathbf{B}^{-1}) \right],$$

(1)

where $\mathbf{B} = \mathbf{B}/J^{2/3}$ is the volume adjusted part of the left Cauchy-Green deformation tensor $\mathbf{B} = \mathbf{F} \mathbf{F}^T$, dev denotes the deviatoric part, \mathbf{F} denotes the deformation gradient, $J = \det \mathbf{F} = (\det \mathbf{B})^{1/2}$ is the Jacobian, μ_0 is the shear modulus at small strains, and ω_0 is a dimensionless constant with $0 < \omega_0 \leq 1$. This new model eliminates the complicated and physically unrealistic features of the compressible Mooney-Rivlin model originally in ALE3D (and currently in LS-DYNA); (cf. the discussion in Appendix A of Scheidler [2010]). The relationships between the parameters μ_0 and ω_0 above and the parameters A and B in the previous model (ALE3D ysmodel 144) are $A = \frac{1}{2} \omega_0 \mu_0$ and $B = \frac{1}{2} (1 - \omega_0) \mu_0$. The accuracy of the advection of \mathbf{B} is enhanced by advecting the logarithm of \mathbf{B}.

For this new version of the Mooney-Rivlin model (ALE3D ysmodel 146), the axial stress σ in a uniaxial stress test is given by

$$\sigma = \frac{\mu_0}{J} \left[\omega_0 \left(\lambda^2 - \frac{1}{\lambda} \right) - (1 - \omega_0) \left(\frac{1}{\lambda^2} - \lambda \right) \right],$$

(2)

where λ is the principal stretch in axial direction with the isochoric deformation assumption. The pressure was determined by setting the lateral stress to zero. For a nearly incompressible material like soft tissue, the Jacobian J may be set to 1 in Eq. 2, since the volume change in a uniaxial stress test will be negligible.

Quasi-static uniaxial stress data at strain rates from 10^{-3}/s to 1/s was available for soft tissue. Due to lack of reliable data at the higher strain rates generated by projectile penetration, the quasi-static data was qualitatively extrapolated to yield a stress-stretch curve for strain rates of 10^3–10^4/s. The model is rate-independent. A fit is constructed at a strain rate of 10^3–10^4/s to produce stresses consistent with deformation at the higher rates. Equation 2 ($J = 1$) was then fit to this extrapolated
curve (Scheidler 2010), giving \(\mu_0 = 80 \text{ kPa} \) (0.8 bar) and \(\omega_0 = 0.3 \). This value of the shear modulus is within the range of values found in the literature: 4.2–23.0 psi (or 0.289–1.59 bar) (Winter 1975).

The Grüneisen form of the equation of state (as implemented in ALE3D) is used for the ballistic gelatin as follows:

\[
P = \frac{\rho_0 c^2 K \left[1 + \left(1 + \frac{\gamma_0}{2} \right) K - \frac{a K^2}{2} \right]}{\left[1 - (S_1 - 1)K - S_2 \frac{K^2}{(K+1)} - S_3 \frac{K^3}{(K+1)^2} \right]} + (\gamma_0 + a K) e,
\]

where the compression \(K \) is given by \(K = \left(\frac{\rho}{\rho_0} - 1 \right) \); \(S_1, S_2, \) and \(S_3 \) are coefficients from the \(u_S - u_p \) relationship; and \(\gamma_0 \) is the Grüneisen parameter.

The reference density, \(\rho_0 \), is 1.05 g/cm\(^3\) (Winter 1975). The bulk sound speed, \(c \), is 0.156 cm/µs. The bulk modulus is 0.026 Mbar. The cubic polynomial coefficients fitting the shock compression curve are the same as those for water: \(S_1 = 2.56, S_2 = -1.986, S_3 = 0.2268 \); the Grüneisen parameter \(\gamma_0 \) is constant 0.5 and the linear correction factor, \(a \), is 0.

2.2 Brain

The Mooney-Rivlin model is also applied for the brain. The density of the brain is chosen to be 1.04 g/cm\(^3\) (Claessens et al. 1997; Wang et al. 2007; Ho and Kleiven 2009; Watanabe et al. 2009). The bulk modulus is set to be 2.19 GPa (0.022 Mbar) (Margulies and Meany 1998; Zong et al. 2006; Watanabe et al. 2009). The bulk sound speed (calculated from the bulk modulus and density) is 0.145 cm/µs. The shear modulus, \(\mu_0 \), is 13 kPa and \(\omega_0 = 0 \) (Ott et al. 2012). The Poisson’s ratio calculated from the bulk and shear moduli is 0.4999. The cubic polynomial coefficients fitting the shock compression curve are the same as those for water: \(S_1 = 2.56, S_2 = -1.986, \) and \(S_3 = 0.2268 \); the Grüneisen parameter \(\gamma_0 \) is constant 0.5 and the linear correction factor, \(a \), is 0.

2.3 Skull

The density of the skull is chosen to be 1.412 g/cm\(^3\) (Sauren and Claessens 1993; Henry and Letowski 2007; Moore et al. 2009; Taylor et al. 2009). This number came from earlier measurements with human cadaver skulls, 0.051 lb/in\(^3\) (1.412 g/cm\(^3\)) (McElhaney 1970). The material is modeled as homogenous (i.e., with no distinction between the skull and the suture). Density fractionation measurement with the porcine cortical bone powder samples shows that about 65% of dry bone powder has density values in the 2.0- to 2.1-g/mL range and about 30% is in the 2.1- to 2.2-g/mL range, while for human bone powder, about 80% is in the 2.0- to
2.1-g/mL range and about 15% is in the 2.1- to 2.2-g/mL range (Aerssens et al. 1998). However, this density was measured from the dry bone powder prepared from femoral shaft bone samples. The skull, being porous, would have a lower density than the measured values. The Young’s modulus is set to 6.5 GPa (Moore et al. 2009; Motherway et al. 2009; Taylor et al. 2009). Poisson’s ratio is set to 0.22. The elastic model is applied to model the skull.

The material parameters are summarized in Tables 1–3.

Table 1 Material parameters in the model

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density (g/cm3)</th>
<th>Shear Modulus</th>
<th>ω_0</th>
<th>Bulk Modulus (Mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft tissue</td>
<td>1.05</td>
<td>0.8 bar</td>
<td>0.3</td>
<td>0.026</td>
</tr>
<tr>
<td>Brain</td>
<td>1.04</td>
<td>0.13 bar</td>
<td>0</td>
<td>0.022</td>
</tr>
<tr>
<td>Skull</td>
<td>1.412</td>
<td>0.026 Mbar</td>
<td>. . .</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Table 2 Derived variables

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bulk Sound Speed (cm/µs)</th>
<th>Young’s Modulus</th>
<th>Poisson Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft tissue</td>
<td>0.156</td>
<td>240 kPa</td>
<td>0.4999</td>
</tr>
<tr>
<td>Brain</td>
<td>0.145</td>
<td>39 kPa</td>
<td>0.4999</td>
</tr>
<tr>
<td>Skull</td>
<td>0.165</td>
<td>6.5 GPa</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 3 Coefficients for the Grüneisen form of the equation of state

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>γ_0</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft tissue</td>
<td>2.56</td>
<td>-1.986</td>
<td>0.2268</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Brain</td>
<td>2.56</td>
<td>-1.986</td>
<td>0.2268</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Skull</td>
<td>0.94</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

3. The Simulation Setup

Since the recorded pressure history at the exit of the shock tube is not sufficient for use as boundary condition to drive the simulation, to accurately simulate the blast from the shock tube, the whole shock tube has to be modelled. In the experiments the shock tube has a 12-inch (30.5-cm) driver section where nitrogen is used as the driver medium. The driven section is 10-ft (304.8-cm) long with a 12-inch diameter (Fig. 1). Flush-mounted pressure transducers located 1/4-inch inward from the tube exit record the pressure trace near the exit (Endevco 8530B, San Juan Capistrano, CA) (Shridharani 2012).
Within the shock tube, the mesh is advection-enabled during simulation. The mesh element size is initially around \((X \times Y \times Z) = 0.6 \times 0.5 \times 0.5 \text{ cm}\) or less. With weighted advection, the mesh element size can reduce to around \((X \times Y \times Z) = 0.4 \times 0.5 \times 0.5 \text{ cm}\) or less near the shock front during the passage of the shock front.

For the object space (the space directly outside the tube exit, where the test object is placed) the mesh stays Eulerian; 2 meshes, 1 finer and 1 coarser, have been used for this report. With the finer mesh, the mesh element is about \(0.3 \times 0.2 \times 0.2 \text{ cm}\) around the test object, while with the coarser mesh, the mesh elements having dimensions about \(0.6 \times 0.5 \times 0.5 \text{ cm}\) around the test object, is run for comparison.

In the region further downstream of the test object, the mesh needs to be extended far enough such that the pressure profile at the downstream boundary should not affect the computational accuracy near the center of the simulation (the space just outside the tube exit). Beyond the tube exit, the mesh is extended by 140 cm in the
axial X direction and 120 cm in the radial direction (Y or Z). The mesh element size increases gradually both in the X direction and in the radial direction away from the core region with constant-sized mesh (Fig. 1).

The porcine head is created from computed tomography (CT) images of a porcine head, which is different from the one used in the blast tests (Yorkshire pigs). The solid volume for the porcine head is shaped into the ALE3D mesh. Since only the head portion is digitally available, the cervical spine is numerically fixed to the coordinates to emulate the presence of the porcine body.

4. Comparison with Experimental Data

The simulations with ALE3D use centimeters, microseconds, grams, and megabar (the B-Division units) (LLNL 2014), in which the pressure uses megabar for simulation; 1 Mbar = 10^5 MPa.

4.1 Comparison with Measured Pressure Trace near the Tube Exit

In the experiments the blast gas flow in the shock tube is characterized only by the pressure measured near the exit of the shock tube with transducers at 1/4-inch upstream of the tube exit, evenly spaced around the tube circumference (Shridharani 2012). One such pressure trace dataset for an incident pressure of 2.6 bar gauge (37.7 psig) has been provided by the experimentalist group. However, the pressure in the driver section of the shock tube is not provided by the experimentalists. Instead the pressure in the driver section is estimated with the analytical relationship for pressures of a 1-dimensional (1-D) Riemann shock tube problem, as follows:

\[
\frac{p_3}{p_1} = \frac{p_2}{p_1} \left[1 - (\gamma - 1) \frac{p_2 - 1}{p_1} \right]^{-2\gamma/(\gamma-1)}
\]

where \(p_1 \) is the atmospheric pressure, \(p_2 \) the pressure at the shock tube exit, \(p_3 \) the pressure in the driver section, and \(\gamma \) the heat capacity ratio (Schreier 1982; Terao 2007; Needham 2010). The heat capacity ratio, \(\gamma \), for air is 1.4. The calculated pressure in the driver section for each prescribed pressure at the shock tube exit is listed in Table 4.
Table 4 Pressure in the shock tube

<table>
<thead>
<tr>
<th>Pressure at the Shock Tube Exit (psig)</th>
<th>Pressure at the Shock Tube Exit (bar) (abs)</th>
<th>Pressure in the Driver Section (bar) (abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.7</td>
<td>3.61</td>
<td>17.98</td>
</tr>
<tr>
<td>49.8</td>
<td>4.45</td>
<td>31.79</td>
</tr>
<tr>
<td>74.0</td>
<td>6.12</td>
<td>83.81</td>
</tr>
</tbody>
</table>

aEstimated

The simulated pressure trace at the pressure transducer location (1/4-inch upstream of the tube exit)—for the case with an incident pressure (at the pressure transducers at the end of the shock tube) of 37.7 psig (2.6 bar gauge) in experiment—in comparison with the measured pressure history at the same location is shown in Fig. 2, along with the pressure traces at other locations (to be described afterward). No test object is present in the test section in this shock tube simulation.

![Fig. 2 Comparison of pressure history traces at different tracer locations in simulation. The line marked test is the measured pressure data from the experiment. The locations of the tracers are shown in Fig. 3.](image)

The tracer stx1 is located at the center on the exit YZ-plane (at X = 0). The tracer stx1d is located at the center on the YZ-plane 5 cm upstream from exit (X = -5 cm). The tracer stx2b is located next to the tube wall at 1/4-inch from the tube exit (X = -0.635 cm; i.e., same location as the transducers in experiments). The tracer stx2d is located next to the tube wall at 5 cm upstream from the tube exit (X = -5 cm).

During simulation, the frictionless slip condition is applied on the tube wall in place of an actual frictional turbulent boundary layer. The nodes on the wall are allowed
to slide along the wall surface direction except the last circumferential nodes on the YZ-plane (at X = 0) at the tube exit. However, in this computational scheme, the pressure calculated around these last nodes develops a higher percentage of error, which has been hard to correct. If, instead, we move 5 cm upstream from the tube exit (the YZ plane at X = –5 cm), the calculated pressure shows a more planar 1-D profile (i.e., the pressure at the center of the YZ-plane [tracer stx1d] is practically the same as the pressure near the tube wall on the same YZ-plane [tracer stx2d]). Therefore, the pressure at these locations (stx1d or stx2d) is used for comparison with the measured pressure data from the experimentalists.

The peak pressure in the simulation reaches 3.6×10^{-6} Mbar (2.6 bar gauge or over-pressure)—same as in the experiments. The simulated pressure history still resembles a Friedlander-style pressure profile for a typical explosion in the open but without the negative pressure phase. The pressure unloading being slower in the simulation than in the experiment is probably due to the difference in the rarefaction waves, which appears to be slower in simulation than that in the experiments. The apparent unloading rate may also be affected by the location of the tracer. Moreover, while in simulations the pressure wave running down the shock tube starts out as a planar wave, in experiments the pressure wave jets out the driver section through a small ruptured hole through the center of the Mylar diaphragm such that the pressure wave starts out as a gas jet instead of an idealized planar wave. This gas jet has a higher pressure around the centerline, which will affect the pressure profile further down the shock tube. The ruptured hole also changes the dynamics of the rarefaction wave; it may cause the rarefaction wave to propagate a little faster (than the planar wave in simulation). But how far the rarefaction wave has run over the shock wave front is not knowable from the experimental data. For further details, see the Appendix, which includes discussion about the effect of mesh resolution.

4.2 Comparison with Measured Porcine Head Surface Pressure

The porcine test object is placed next to the exit of the shock tube, with its right side facing the exit of the shock tube (Fig. 3).
Figure 3 Porcine head outside the exit of the shock tube

Figure 4 shows the tracers mentioned in the various sections on the Z = –2 plane. However, the pressure transducers and the accelerometer may not be on the same plane in the experiment.
Fig. 4 Locations of tracers mentioned in the various sections ($Z = -2$ plane)

Figure 5 shows the locations of the tracers in the coarser mesh.
Pressure sensors are placed on the right, top, and left side of the porcine head for the surface pressure measurements. Figure 6 shows the simulated surface pressure (fine mesh) compared with the measured surface pressure for tests with an incident blast pressure of 37.7 psig (2.6 bar gauge) (C Bass; personal communication; November 2010; unreferenced). The pressure in the simulation on the right side of the porcine face follows the Lagrangian tracer, tspr, initially in a nonmixed host element beneath the skin. The host element may become a mixed element with which the tracer drifts along due to head movement during impact. To improve comparison, another tracer tspr2, a Eulerian tracer, is added just outside the skin surface. The pressure history at this Eulerian tracer location initially follows the experimental measurement closely; however, the relative distance of this tracer point to the surface of the porcine face increases with time because the porcine head moves with the blast. The pressure at tspr stays higher a little longer than in experiment. This may relate to the flat top in simulation instead of a sharp top in
experiment (Fig. 2). In the figure, tspc (Lagrangian tracer) is the pressure history at a center top location on the skin surface, and tspl (Lagrangian tracer) is the pressure history at a location on the left side of the skin surface.

At the moment of blast impact, the peak pressure reaches around 7 bar. When the over-pressure reaches 15 psi (1.034 bar, 103.4 kPa gauge), there is a 50% chance of eardrum rupture in a human (Owen-Smith 1979).

![Simulated surface pressures (fine mesh) compared with the measured surface pressure (right face)](image)

Fig. 6 Simulated surface pressures (fine mesh) compared with the measured surface pressure (right face)

4.3 Comparison with Measured Intracranial Pressure

There are 3 Lagrangian tracer points within the brain (Fig. 4) for the intracranial pressure measurements: one right, one near the top, and one left. Figure 7 shows the intracranial pressures at these tracer locations for the test with an incident pressure of 49.8 psig (3.44 bar gauge).
Fig. 7 History of the intracranial pressures (fine mesh) compared with the measured pressures during tests. However, the piezo-resistive pressure transducers will not be able to pick up negative (abs) pressure values.

The plot is separated out into 3 plots: one for right, one for center, and one for left each; along with the lower and upper bound lines from each test data set and the simulation result using the coarser mesh. Figure 8 shows such a plot for the intracranial pressure on the right side (tracer ticpr, facing the shock tube).
Fig. 8 Intracranial pressure on the right side. Test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.

The intracranial pressure on the right side (tracer ticpr) peaks around 3.7 bar, similar to the measured data in the first ms after the blast impact. The simulated pressure with finer mesh (ticpr) is not far off the test data. The simulated pressure with the coarser mesh is initially similar to the result with the finer mesh. The sudden jump in pressure shown in the coarse mesh (Figs. 8–10) may come from the effect of tracer drift and the effect of the mixed elements. Other differences between the simulated pressure and the test data may come from factors such as the location of the tracer, the geometry differences between the digital model and the real test object, and difference in pressure loading.

Figure 9 shows the plot for the intracranial pressure at the center location (tracer ticpc).
Fig. 9 Intracranial pressure at the center location. The test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.

Figure 10 shows the plot for the intracranial pressure on the left side (tracer ticpl).
Fig. 10 Intracranial pressure on the left side. The test data are shown with their lower and upper bounds. The pressure in simulations show the results from the finer mesh and from the coarser mesh.

The tracer points drift with the head, which moves with time. Figure 11 shows the history of the X coordinates of the tracer points (fine mesh).

At the moment of impact, the intracranial pressure reaches above 3 bar. Intracranial pressure exceeding 34 psi (gauge) (2.3 bar) has been linked to high probability of severe injury for human brains (Ward 1978; Ward and Chan 1980).
4.4 Comparison with Measured Acceleration Data

An accelerometer box is attached to the top of the skull for measuring the acceleration of the porcine head during the tests. Figure 12 shows the acceleration in simulation compared with measured data for the test with an incident pressure of 37.7 psig (2.6 bar gauge). The Lagrangian tracer location tac1 is located near the top of the skull, similar to the location of the accelerometer box during the tests; the Lagrangian tracer ticpc is located within the brain, which does not have a corresponding test data set. The tracer sampling rate is 1 µs, same as in experiment. The amplitude of the acceleration at tracer tac1 (~612 g)—being lower than the measured data (~1,000 g)—may come from a combination of factors, e.g., the difference in mass between the digitized head and the real head, the transient data surge of the instrumentation, and/or the smoothing or averaging effect in time and space. Lowering the density of skull can increase the acceleration, but it will also increase the sound velocity in the skull. The amplitude of acceleration at tracer ticpc (brain) is slightly higher while using the finer mesh (~400 g) than using the coarser mesh (~360 g).
Fig. 12 Cranial acceleration history. Inset shows the close-up around the spike. The tracer tac1 corresponds to the location of the accelerometer in the tests. The tracer ticpc is inside the brain and has no corresponding experimental measurement data.

The negative phase in the measured acceleration suggested that the accelerometer may have sprung back during the initial impact. The measured acceleration history shows a superposed higher frequency oscillation with a wave length around 35 µs. It may come from pressure waves in the head, which travel about 5 cm in the brain in 35 µs and about 6 cm in the skull in 35 µs.

Figure 13 shows the accelerations at the tracer tac1 (accelerometer location) both from simulations with the finer mesh and with the coarser finite element mesh.
Fig. 13 Cranial acceleration history. The tracer tac1 corresponds to the location of the accelerometer in the experiments.

Figure 14 shows the accelerations at the tracer ticpe (within the brain) both from simulations with the finer mesh and with the coarser mesh.
Fig. 14 Cranial acceleration history. The tracer ticpc is inside the brain and has no corresponding experimental measurement data (the line marked test is the same as previous—at the accelerometer location).

5. Additional Calculated Variables

5.1 The Coup and Contrecoup Profile

The blast wave of the shock tube impacts on the right side of the porcine head. The intracranial pressure on the right side of the porcine head reaches above 3 bar (abs) at around 4,500 µs (Fig. 15).
Fig. 15 Regions in color at 4,500 µs have pressure above 3 bar (abs). Finite element mesh shows the brain and eyes of the pig.

The pressure wave then traverses to the other side of the brain along the impact direction. At 5,000 µs, negative pressure builds up on the other side (nonimpact side) of the brain (Fig. 16). The subsequent pressure wave on the opposite side from the initial impact (coup) is called the contrecoup in the literature.
When the pressure falls below certain critical level, cavitation may occur. The critical vaporization pressure changes with temperature. At normal porcine body temperature (about 39 °C) the water vaporization pressure is about 7 kPa (0.07 bar) (Malley 2005; Herbert et al. 2006). The vapor pressure of blood is equivalent to a saline with 0.9 g of sodium chloride per 100 g of water (Culbert 1935). Its vapor pressure will be a little lower (less than 1-mm Hg [≈133 Pa]) than that of water (Kientzler et al. 1952). Since 99% of the cerebrospinal fluid (CSF) is water, its vapor pressure is likely similar. If cavitation does occur in the vasculature (blood) or in the CSF, it generates tiny gas bubbles that may negatively impact the normal function of the brain; too many gas bubbles can be detrimental or even lethal (Brennen 1995; Brennen 2006). The process of cavitation can further change the subsequent pressure field in the surrounding region of the brain. Figure 17 shows the profile of pressure regions below 0.07 bar.
Adding information about the vasculature orientations into mesh will enhance the accuracy of simulation (Omori et al. 2000; Ho and Kleiven 2007). With the vasculature orientation in the mesh, the stress along the vasculature or the shear across the vasculature can be calculated more accurately.
5.2 The Deformation of the Skull

McElhaney (1976) discussed the mean strain criterion (MSC) as an indicator of head injury, where mean strain is defined as the displacement of one side of the head relative to the other, divided by the distance across the cranium. Impact tests with various sized primates to produce minor, but identifiable brain injury show that the MSL of 0.0329 inches/inch is tolerable for Rhesus monkeys subjected to rigid striker impacts. A tolerable mean strain level of 0.0061 inches/inch has been predicted by the MSC model for fresh intact cadaver (McElhaney 1976). Furthermore, the maximum tolerable skull deformation has been estimated to be approximately 0.02 inch (Fan 1971). Since the impact surface area of a blast is larger than that of a focused impact, these estimates from tests with focused impacts could be used as a guide but need modification to find the tolerable strain level for the blast impact.

Figure 18 shows the relative strain from 2 tracers at opposite sides of the cranium for the case of an incident pressure of 2.6 bar (gauge).

The head injury appears to be probable for the simulated porcine head; however, the elastic model for the skull may have overestimated the magnitude of the strain (Powell et al. 2012).
5.3 Strain in the Brain

Figure 19 shows the equivalent strain profile at 9,800 µs at about 5 ms after blast. It has been estimated that with a strain greater than 20%, the axotomy (axonal disconnection) will result from membrane fragmentation and cytoskeletal proteolysis (Maxwell 1997).

Another cumulative strain damage measure, based on the calculated volume fraction of the brain that has experienced a specific level of stretch, has been used as a predictor for deformation-related brain injury. The measure is based on the maximum principal strain calculated from a strain tensor obtained by integration of the rate of deformation tensor (Bandak and Eppinger 1994).

Adding information about the nerve fiber orientation into mesh will enhance the accuracy of simulation (Chatelin et al. 2011; Wright and Ramesh 2012; Dagro et al. 2013). With the nerve fiber orientation in the mesh, the stress along the nerve fiber or the shear across the nerve fiber can be calculated more accurately.
Fig. 19 Regions in color at 9,800 µs have equivalent strain greater than 0.15

5.4 The Effective Stress (von Mises Stress)

Figure 20 shows the profile of the effective stress (or von Mises stress) at 9,800 µs at about 5 ms after blast. The effective stress ranges from 0 to 0.13 bar (13 kPa) in the brain. The von Mises stress is defined as

\[
\sigma_e = \sqrt{\frac{3}{2} \sigma'_{ij}\sigma'_{ij}} .
\]
On the (σ_1, σ_2) stress space, the maximum shear (Tresca yield surface) is within the envelope of von Mises stress. Shear stress in the midbrain of the brainstem at 7.8 kPa level has been correlated with 50% probability of mild traumatic brain injury (mTBI) (Zhang et al. 2004).

![Image](image.png)

Fig. 20 Regions in color at 9,800 μs have von Mises stress greater than 7.8e-2 bar (7.8 kPa)

5.5 Deviatoric Strain Energy

Figure 21 shows the profile of the deviatoric strain energy at 9,800 μs at about 5 ms after blast. Higher deviatoric strain energy may lead to regional injury.
Fig. 21 Regions in color at 9,800 µs have deviatoric strain energy greater than 1.e-3 bar-cc/cc (1.e-4 J/cm³) (threshold not established yet)

5.6 Löwenhielm Vein Injury Criterion

Stress tests with parasagittal bridging veins from the lateral convexity of the brain show that the vein’s strain capacity is dependent on strain rate; maximal strain is markedly reduced as the rate was increased (Löwenhielm 1974; Takhounts 2003). The border line in the strain rate and strain space can be fitted to the relationship

$$\varepsilon_{\text{critical}} = 0.0608 \left(\log_{10}(\dot{\varepsilon})\right)^2 - 0.4414 \left(\log_{10}(\dot{\varepsilon})\right) + 0.9872 \ , \quad (6)$$

where $\dot{\varepsilon}$ is strain rate in 1/s.
Figure 22 shows the profile of \(\left(\frac{\varepsilon}{\varepsilon_{critical}} \right) \), where the equivalent strain and equivalent strain rate are used in place of strain and strain rate. Higher \(\left(\frac{\varepsilon}{\varepsilon_{critical}} \right) \) ratio shows a higher possibility of vein injury. When \(\left(\frac{\varepsilon}{\varepsilon_{critical}} \right) \) is greater than 1, the strain will be large enough to show vein injury. In Fig. 22, the regions in color have \(\left(\frac{\varepsilon}{\varepsilon_{critical}} \right) \) greater than 0.015.

Fig. 22 Regions in color at 9,800 µs have \(\left(\frac{\varepsilon}{\varepsilon_{critical}} \right) \) greater than 0.015. It may increase with time.
5.7 Viscous Injury Criterion

Rapid motion of the skull causes displacement of the skull against the soft tissues of the brain, which lag in their motion due to inertia and loose coupling to the skull. Relative displacement between brain and skull produces deformation of brain tissue and stretching of bridging veins, which contribute to the tissue-level causes of brain injury. The brain compliance approach interprets brain deformation by the viscous response (VC) or the product of strain and strain rate at the tissue level. The viscous response is a measure of the viscoelastic reaction of tissue to dynamic deformation and combines 2 parameters of soft tissue injury: strain (compression, C) and strain rate (velocity of deformation, V). The viscous response is representative of the absorbed energy through kinetic energy conversion (Lau 1986; Viano 1988; Zhang 2003). The estimated threshold for 25% of mild traumatic brain injury is 14/s (or 1.4e-5/µs) (Zhang 2003). Figure 23 shows the profile of the VC or ($\varepsilon \cdot \dot{\varepsilon}$) at 9,800 µs at about 5 ms after blast. The equivalent strain and equivalent strain rate are used in placed of strain and strain rate.
3.8 Linear Accelerations

Test data from frontal hammer blows and air blasts to the exposed brain, drop tests of human cadaver heads (Wayne State Tolerance Curve), and concussive data from animals as well as long-duration human sled experiments have led to the Gadd Severity Index. The injury assessment is based on the average acceleration and pulse duration, since the injury survivability of brain increases if the duration of the pulse decreases. For that, an effective acceleration is defined as

\[A = \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \]

where \(a(t) \) is the acceleration and \((t_2 - t_1) \) represents the duration. A head injury criterion (HIC) is defined as

\[HIC = \]
\[
\max \left[\frac{1}{(t_2-t_1)} \int_{t_1}^{t_2} a(t) dt \right]^{2.5} (t_2 - t_1),
\]

For the incident pressure of 37.7 psig (2.6 bar gauge), the calculated HIC for the blast simulation is around 10 (based on \(\Delta t = 5\) ms; based on the acceleration at the Langrangian tracer tac1 [the accelerometer location]). Since the blast peak acceleration surge duration is typically only a few tens of microseconds compared with the acceleration duration in a vehicle collision typically of a few tens of milliseconds, the conventional HIC criterion developed for motor vehicle safety is not suitable for the blast impact. A more relevant formula developed specifically for blast impact should take this shorter acceleration duration into consideration.

Another acceleration inspired measure named the skull fracture correlate (SFC) is defined as \(SFC = \frac{\Delta V_{HIC}}{\Delta T_{HIC}}\), where \(\Delta V_{HIC}\) is the change in velocity and \(\Delta T_{HIC}\) is the HIC time interval. For 15% or less probability of skull fracture, the threshold is \(SFC < 124\) g with a 95% confidence band of \(96 < SFC < 144\) g. The SFC correlation is established based on logistic regression against an extensive set of post mortem human specimen data (Vander Vorst et al. 2003; Chan et al. 2006). These fracture correlations developed from drop tests could be referenced and modified for finding the corresponding threshold for blast impact.

For the incident pressure of 37.7 psig (2.6 bar gauge), the calculated SFC for the simulation is around 94 g based on the velocity change of a point in the skull facing the shock tube blast (for \(\Delta T_{HIC} = 5\) ms).

5.9 Angular Acceleration

Angular acceleration is a major component that can lead to brain injury (King et al. 2003; Weaver et al. 2012; Kleiven 2013; Rowson and Duma 2013). High angular acceleration results in high shear within the brain; injury can arise as a consequence. The calculated initial angular acceleration for the simulation of blasted porcine head is on the order of \(10^5\) rad/s\(^2\) calculated from the displacement of 2 tracer points at opposite sides of the cranium (mostly around the Y axis). An acceleration of 40,000 rad/s\(^2\) for durations greater than 6.5 ms will have a greater than 99% probability of producing concussion in Rhesus monkeys (whiplash injury on the sagittal plane) (Ommaya et al. 1967). However, since a single point at the cervical spine in the simulation is numerically fixed to the coordinates, the angular acceleration in the simulation is probably overestimated.
A rotational brain injury criterion, \(BRIC = \frac{\omega_{\text{max}}}{\omega_{\text{cr}}} + \frac{\alpha_{\text{max}}}{\alpha_{\text{cr}}} \), where \(\omega \) is the rotational velocity and \(\alpha \) is acceleration, has been correlated to brain injury—the critical rotation velocity \(\omega_{\text{cr}} = 42.1 \text{ rad/s} \) and the critical acceleration \(\alpha_{\text{cr}} = 363 \text{ krad/s}^2 \) for college football data (Weaver 2012; Takhounts et al. 2013). This formula, developed from the Abbreviated Injury Scale data from college football players, could be used as a guide but needs modification to be applicable to blast impact related injury.

It was found that a simple combination of peak change in rotational velocity and HIC showed a high correlation (\(R = 0.98 \)) with the maximum principal strain in the brain of the National Football League football players (Kleiven 2007).

6. Discussion

6.1 Shear Modulus for the Brain

The shear modulus of human brain tissue has been measured to be \(13.0 \pm 10 \text{ kPa} \) (i.e., from 3 to 23 kPa) for strain rates ranging from 25 to 248 strain/s using the Split Hopkinson Pressure Bar technique (Ott et al. 2012) (Table 5). This range covers many published work on the brain properties (Shuck and Advani 1972; Donnelly 1997; Margulies and Meany 1998; Hamhaber 2006; Kruse et al. 2008; Bilston 2011a; Bilston 2011b; Bayly et al. 2012; Rashid 2012). Among the published works, many use the value \(22.53 \text{ kPa} \) (Hoberecht 2009; Moore et al. 2009), which is around the upper end of the \(13.0 \pm 10 \text{ kPa} \) mentioned. Since the shear modulus is rate-dependent, the value around the upper end of the \(13.0 \pm 10 \text{ kPa} \) is more appropriate for higher rate problems.

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Shear Modulus (bar)</th>
<th>Bulk Modulus (Mbar)</th>
<th>Bulk Sound Speed (cm/µs)</th>
<th>Young’s Modulus (kPa)</th>
<th>Poisson Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04</td>
<td>0.2253</td>
<td>0.022</td>
<td>0.145</td>
<td>67.6</td>
<td>0.4999</td>
</tr>
</tbody>
</table>

Figure 24 shows the intracranial pressure profile using this shear modulus value of \(22.53 \text{ kPa} \) instead of \(13 \text{ kPa} \) (cf. Section 2.2).
Since the deviatoric stress is orders of magnitude less than pressure, the shear modulus will have little effect on pressure. So the intracranial pressure measurements will not be sensitive to variations in the shear modulus.

On the other hand, the history of the equivalent strain (mostly shear strain) shows greater sensitivity to the variations in the shear modulus (Fig. 25).
The history of the von Mises stress (Fig. 26) again shows sensitivity to the variations in the shear modulus.
6.2 The Acceleration of the Head

Figure 27 shows the acceleration of the skull (tracer tac1, equivalent to the accelerometer in the experiments) for different shear moduli. They remain the same. The acceleration in the brain (tracer ticpe; no corresponding measurements) also remain the same for different shear moduli.
6.3 Other Simulation Work Comparison

There have been many attempts to simulate brain injury (Brands et al. 2004; Moore et al. 2009; Nyein et al. 2010; Panzer et al. 2012; Lamy et al. 2013; Zhang et al. 2013; Zhu et al. 2013). In general there were no experimental data on injured human brains to compare. Elaborate partitioning of the brain into functional compartments (gray matter, white matter, corpus callosum, etc.) does not yet have reliable corresponding material properties.

A popular model for brain is the generalized Maxwell model, or simply the viscoelastic model in LS-DYNA (*MAT_VISCOELASTIC, *MAT_GENERAL_VISCOELASTIC). The constitutive model for an isotropic viscoelastic material with small strain is given by

\[
\sigma = \int_0^t 2G(t - \tau) \frac{d\varepsilon}{d\tau} d\tau + I \int_0^t K(t - \tau) \frac{d\Delta}{d\tau} d\tau ,
\]

where \(\sigma\) is the Cauchy stress, \(\varepsilon\) the deviatoric strain, \(\Delta\) the volumetric strain, I the identity tensor. \(G(t)\) and \(K(t)\) are the Prony series shear and bulk relaxation kernel functions, respectively.

In a 1-D relaxation test, the Prony series for the shear relaxation is
\[
G(t) = G_\infty + \sum_{n=1}^{N} G_n e^{-t/\tau_n}, \quad (8)
\]
where \(G_\infty \) is the long term modulus once the material is fully relaxed and \(\tau \) is the relaxation time constant. When only one term in the series is used, it can be simplified to
\[
G(t) = G_\infty + (G_0 - G_\infty) e^{-t/\tau}, \quad (9)
\]
where \(G_0 \) is the initial shear modulus independent from relaxation. This is also the form used in LS-DYNA (*MAT_VISCOELASIC). This model works well for some problems. There are various values used for the relaxation time constant in various simulation endeavors. But some simulation work used unrealistic parameters, such as unrealistic time constant. From tests on the rat brain (Finan et al. 2012), the relaxation time constant has been measured to be typically greater than 11 ms, which is far greater than the positive phase of the Friedlander curve of a blast wave. Some simulation work used artificially much shorter time constant. So this model may not have worked well for certain problems.

In the current pursuit using the Mooney-Rivlin model, there is a need to include strain-rate dependency. Since the strain-rate dependency determines the initial peak shear stress after the blast impact, it is critical for the brain injury study. One way to augment the model is to add a strain-rate dependency and a viscoelastic feature to the current Mooney-Rivlin model (2), such as
\[
\sigma = \mu_0 J \left[\omega_0 \left(\lambda^2 - \frac{1}{\lambda} \right) - (1 - \omega_0) \left(\frac{1}{\lambda^2} - \lambda \right) \right] \left[1 + C \cdot \ln \left(\frac{\dot{\varepsilon}}{\varepsilon_0} \right) \right] \\
\left[\left(\frac{D}{\mu_0} \right) \int_0^t 2G(t - \tau) \frac{d\varepsilon}{d\tau} d\tau \right], \quad (10)
\]
where C is a dimensionless coefficient for the rate dependency, \(\varepsilon_0 \) is a reference strain rate, and D is a dimensionless coefficient for the viscoelastic feature. When fitted to available experimental data, it can provide a more precise peak stress at the moment of impact, which can relate readily to the probability of brain injury.

Figure 28 shows the equivalent strain rate in the porcine brain under blast impact. The maximum strain rate in the brain can reach about \(10^4 /s \) (may be mesh resolution dependent). Next to the surface of a penetrating projectile, the equivalent strain rate in gelatin can reach \(10^6 /s \) (Huang 2013).
Fig. 28 Region in color at 4,600 µs has the equivalent strain rate in the porcine brain greater than 50/s

In this simulation study there is no viscoelastic relaxation in the model. However, even without the viscoelastic relaxation the intracranial pressure still shows attenuation in time. Furthermore, the viscoelastic shear relaxation tends to lower the probability to brain injury, which makes it somewhat less critical in studying the brain injury when the relaxation time constant is much greater than the positive phase of the blast wave.
6.4 Material Properties

Many of the current material property data came from testing with sliced samples. There are sample gripping problems. For instance, in Split Hopkinson Bar tests the samples need to be mounted to the test fixture. Innovative experimental techniques such as shear wave imaging, magnetic resonance elastography are emerging (Mariappan et al. 2010; Macé et al. 2011; Aurant et al. 2012; Bayly et al. 2012; Suzuki et al. 2014; Tomita et al. 2014). Some techniques are noninvasive. They may lead to noninvasive measurement of high strain-rate data of soft tissues in vivo.

In the current simulation study, the skull geometry does not have cavities, and the mesh is not geometry-conforming. The High Intensity Focused Ultrasound and CT can be used to generate more accurate mesh for skull simulation (Aubry et al. 2003; Autuori et al. 2006; Motherway 2009; Nakajima et al. 2009; Binkowski et al. 2010; Kazakia et al. 2013). Meshes having more details of surface outlines, cranial sutures and cranial porosities, and spacial density distribution will greatly enhance the accuracy of simulations, for example, in the bone conduction study.

6.5 Medical Imaging

Continued improvement in imaging techniques may lead to association of minute, initially unidentifiable symptoms with later development of axonal swelling and amyloid and tau protein abnormalities in the brain. These symptoms have also been diagnosed in sportsmen who suffer from chronic traumatic encephalopathy (Makris et al. 2008; Holli et al. 2009; Gavett et al. 2010; MacDonald et al. 2011; Bigler and Maxwell 2012; Goldstein et al. 2012; Lin et al. 2012; MacDonald et al. 2013; Smith et al. 2013; Taber et al. 2013; McKee et al. 2014; Barrio et al. 2015).

6.6 Gender Difference

There are gender differences in the brain, such as in pain thresholds and differential regulation of cell death programs (the anti-inflammatory process of apoptosis and the proinflammatory process of necrosis). XY neurons were more susceptible to nitrosative stress and exhibited a proclivity toward an apoptosis-inducing factor-dependent pathway, while XX neurons were more susceptible to apoptosis-inducing agents (McCarthy et al. 2012; Jog and Caricchio 2013; Ortona et al. 2014; Sharma et al. 2014). Situations may arise where a more precise differentiation in mitigation and treatment between genders for brain injury cases may need attention.
7. Summary and Conclusion

Shock tube blast on porcine head experimental data, including incident pressure, surface pressure, intracranial pressure, and cranial acceleration, have been compared with simulation using ALE3D. Other physical variables (coup-contrecoup pressure profile, vaporization pressure, skull strain, strain in brain, effective stress, deviatoric strain energy, Löwenhielm vein injury criterion, viscous injury criterion, linear acceleration, and angular acceleration) in the simulations do not have corresponding test data for comparison; they are discussed in association with their injury instigation implications with references to other published findings. The effect of variation of shear modulus based on published measurement data for the brain on impact response is discussed. Furthermore, some nuances about the shock tube simulation are discussed.

With progress in geometry-conforming meshing technique, in noninvasive high-rate properties, and in development in material models, further advances in simulation fidelity will emerge that will help in early diagnosis, treatment, and prevention of brain injury.
8. References

King AI, Yang KH, Zhang L, Hardy W. Is head injury caused by linear or angular acceleration? Presented at the International Research Council on the Biomechanics of Injury Conference; Lisbon, Portugal, 2003 Sep 25.

Kleinschmit NN. A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments. [thesis]. [Lincoln (NE)]: University of Nebraska, 2011.

MacDonald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL.

Richmond DR, White CS. Biological effects of blast and shock. Albuquerque (NM): Lovelace Foundation for Medical Education and Research; 1966.

Appendix. Shock Tube Simulation
A-1. Effect of Mesh Size

To better understand the simulation of the shock tube, simulations using 2-dimensional (2-D) meshes have been performed. The 2-D meshes here are similar to their 3-dimensional (3-D) counterpart, but the mesh size and configuration have been varied. Figure A-1 shows the pressure history at the center of the shock tube exit for different mesh sizes and configurations as summarized in Table A-1, where rlxginit and rlxweightvar are mesh relaxation parameters in ALE3D. The pressure wave front reached the shock tube exit between 4,600 and 4,700 μs.

![Fig. A-1 Pressure history at the center of the shock tube exit. (The time scale is stretched around the impact time.)](image)

<table>
<thead>
<tr>
<th>Label</th>
<th>Initial dx (cm) (end part)</th>
<th>Initial dx (cm) (full tube length)</th>
<th>dx (cm) of the last element at 4,700 μs</th>
<th>rlxginit time (μs)</th>
<th>rlxweightvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>0.5</td>
<td>NA</td>
<td>0.216</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
<tr>
<td>11b</td>
<td>2/3</td>
<td>NA</td>
<td>0.540</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
<tr>
<td>11c</td>
<td>1</td>
<td>NA</td>
<td>0.843</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
<tr>
<td>11d</td>
<td>1/3</td>
<td>NA</td>
<td>0.195</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
<tr>
<td>11a1</td>
<td>0.5</td>
<td>NA</td>
<td>0.012</td>
<td>4,701</td>
<td>1.e-8</td>
</tr>
<tr>
<td>11a2</td>
<td>0.5</td>
<td>NA</td>
<td>0.051</td>
<td>4,701</td>
<td>1.e-6</td>
</tr>
<tr>
<td>13a</td>
<td>NA</td>
<td>1</td>
<td>0.473</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
<tr>
<td>13a1</td>
<td>NA</td>
<td>1</td>
<td>0.032</td>
<td>4,701</td>
<td>1.e-8</td>
</tr>
<tr>
<td>13b</td>
<td>NA</td>
<td>0.5</td>
<td>0.218</td>
<td>4,601</td>
<td>1.e-8</td>
</tr>
</tbody>
</table>
The simulated pressures are all similar, except that with smaller mesh elements the simulation shows higher surge at the time of blast impact, which is likely caused by wave reflection at the mesh boundary where smaller mesh elements are transitioned into larger mesh elements. Figure A-2 shows the pressure profile over the cross section for 3 different mesh configurations (having different dx at 4,700 µs) around the shock wave exit at 4,800 µs. The differences in the pressure profile is effected by the mesh size of the last mesh element where the mesh element size transitions over to a larger mesh size.

![Figure A-2](image)

Fig. A-2 Pressure profile over the cross section for 3 different mesh configurations around the shock wave exit (in 2-D simulation) at 4,800 µs

A-2. Pressure Profiles within the Shock Tube

In the same 2-D simulation study, the pressure histories at locations along the shock tube direction (X-axis) are plotted as shown in Fig. A-3 (with the parameters in Table A-2). The small wavy patterns in the unloading curves are likely from wave reflections at the discontinuous mesh size transition, which propagates upstream against the subsonic gas flow.
Fig. A-3 Pressure histories at locations along the shock tube near the tube wall

Table A-2 Parameters in the 2-D simulation

<table>
<thead>
<tr>
<th>Initial dx (cm)</th>
<th>rlxginit time (μs)</th>
<th>rlxweightvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(full tube length)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.601</td>
<td>1.e-8</td>
</tr>
</tbody>
</table>

Figure A-4 shows the pressure histories at similar locations along the centerline of the shock tube.
There are minimal differences between these 2 figures. The relatively flat top of the curves shrinks with locations toward the exit of the shock tube. Eventually the flat top will reduce to a sharp top when the shock tube is further extended and will resemble a Friedlander wave shape.

Figure A-5 shows the pressure profile next to the centerline of the 3-D shock tube compared with the pressure profile of the 2-D shock tube (3-D parameters detailed in Table A-3). They are very similar. The rarefaction wave (Prandtl-Meyer wave) reflected from the closed backend of the driver section is catching up with the shock wave front. When the length is large enough such that the rarefaction wave is catching up with the shock wave front, the pressure profile will have a narrow top resembling the Friedlander wave form. However, it is not uncommon to find pressure histories with flat top in lab tests.

1 Tasissa AF. On the formation of Friedlander waves in a compressed-gas driven shock-tube. [MS thesis]. [Cambridge (MA)]: Massachusetts Institute of Technology; 2014.

Fig. A-5 Pressure profile along the centerline of the 3-D and 2-D shock tubes at different times

Table A-3 Parameters in the 3-D simulation

<table>
<thead>
<tr>
<th>initial dx (cm)</th>
<th>rlxginit time (μs)</th>
<th>rlxweightvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(full tube length)</td>
<td>4601</td>
<td>1.e-8</td>
</tr>
</tbody>
</table>

Figure A-6 compares the pressure profile next with the tube wall for the 3-D shock tube with the pressure profile for the 2-D shock tube. There is some timing shift. Both profiles show computational problem near the exit of the shock tube.
Fig. A-6 Pressure profile next to the tube wall of the 3-D and 2-D shock tubes at different time

A-3. Pressure Profile around the Shock Tube Exit

Figure A-7 shows the pressure profile (in 3-D simulation) around the shock tube exit in elevation plot at 5,500 µs (about 900 µs after the wave front passed the exit). The sharp spikes around the tube end result from higher numerical errors associated with the boundary conditions along the tube wall (cf. Section 4.1 of report). Ignoring the sharp spikes, the profile shows a nonplanar pressure distribution over the cross section having higher pressure near the centerline and lower pressure closer to the tube wall. The small pressure rise near the pressure front (around X = 40) comes from mesh transition from fine mesh to coarse mesh (from small dx to large dx).
Figure A-8 shows the pressure profile over the cross section for 3 different times around the shock wave exit (in 3-D simulation). Solid lines are sampled at location 5 cm upstream from the exit; dashed lines are sampled at the exit (the pressure transducer locations). Ignoring the numerically erroneous higher values near the wall, the pressure around the centerline is higher than the pressure toward the tube wall.
Fig. A-8 Pressure profile over the cross section for 3 different time around the shock wave exit (in 3-D simulation)

Figure A-9 shows the difference in the pressure profiles at exit between the 3-D and the 2-D simulations. Because there is a small timing shift coming from mesh differences in the shock tube, the time selected for 2-D lines is a little shifted from that in 3-D in order to find a closer match. The differences in pressure near the tube wall may come from differences in the mesh resolution and in the relaxation processes.
Fig. A-9 Difference in the pressure profiles between the 3-D and the 2-D simulations

From the simulated pressure profile with planar pressure wave, and the fact that in experiments the initial pressure wave is a jet through the Mylar diaphragm, the pressure at the center of the shock exit will be higher than the pressure near the wall.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>1 dimensional</td>
</tr>
<tr>
<td>2-D</td>
<td>2 dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>3 dimensional</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebro-spinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>HIC</td>
<td>head injury criterion</td>
</tr>
<tr>
<td>MSC</td>
<td>mean strain criterion</td>
</tr>
<tr>
<td>SFC</td>
<td>skull fracture correlate</td>
</tr>
<tr>
<td>TBI</td>
<td>traumatic brain injury</td>
</tr>
</tbody>
</table>