A Note on Grinfelds’ “Kelvin’s Paradox”

by James Cazamias
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
A Note on Grinfelds’ “Kelvin’s Paradox”

by James Cazamias

Weapons and Materials Research Directorate, ARL
1. REPORT DATE (DD-MM-YYYY)	**2. REPORT TYPE**	**3. DATES COVERED (From - To)**
August 2018 | Technical Note | 1 October 2017–13 August 2018

4. TITLE AND SUBTITLE
A Note on Grinfelds’ “Kelvin’s Paradox”

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
James Cazamias

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Research Laboratory
ATTN: RDRL-WMP-A
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER
ARL-TN-0902

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An improper integral formulation of Kelvin’s force law is transformed into a proper integral that does not exhibit self-force.

15. SUBJECT TERMS
ponderomotive forces, Kelvin’s force, dielectric forces, electromagnetism, E&M

16. SECURITY CLASSIFICATION OF:
- **a. REPORT** Unclassified
- **b. ABSTRACT** Unclassified
- **c. THIS PAGE** Unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
James Cazamias

19b. TELEPHONE NUMBER (Include area code)
(410) 278-9076
Contents

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Issue</td>
<td>1</td>
</tr>
<tr>
<td>2. References</td>
<td>5</td>
</tr>
<tr>
<td>Distribution List</td>
<td>6</td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to thank DJ Griffiths for directing me to M Mansuripur. I would like to thank M Mansuripur for explaining to me what he has done. I would like to thank MS Tiersten for providing me with a copy of his letter to DJ Griffiths.
1. The Issue

Grinfeld and Grinfeld\(^1\) state that the ubiquitous formula for ponderomotive forces due to a distribution of a polarized substance (Eq. 1) implies a nonvanishing self-force with a few exceptions, including spherically symmetric dipole distributions and constant distributions in elliptical domains where \(F \) is the resulting net force, \(P \) is the electric dipole distribution, \(E \) is the electric field, and \(\tau \) is the domain.

\[
F = \int (P \cdot \nabla)E d\tau . \tag{1}
\]

The fundamental issue is that if \(p \cdot \hat{n} \neq 0 \), where \(\hat{n} \) is the surface normal, there is a bound surface charge resulting in a discontinuous \(E \) field. Equation 1 requires the differentiation of this field, resulting in a delta function. The presence of this singularity on the boundary turns this into an improper integral. This does not mean that the integral diverges, but that care needs to be taken in performing the integration.

This behavior has been observed previously.

Griffiths, in the second edition of his textbook\(^2\), has a homework problem that mentions the issue:

Problem 4.30 According to equation (4.5), the force on a single dipole is \((p \cdot \nabla)E \), so the total force on a piece of dielectric material must be

\[
F = \int (P \cdot \nabla)E_{\text{ext}} d\tau \tag{4.53}
\]

[Here \(E_{\text{ext}} \) is the field of everything except the dielectric. You might assume — as others have been known to\(^9\) — that it wouldn’t matter if you used the total field; after all, the dielectric can’t exert a force on itself. However, because the field of the dielectric is discontinuous at the location of any bound surface charge, the derivative introduces a spurious delta function, and you must either add a compensating surface term, or (better) stick with \(E_{\text{ext}} \), which suffers no such discontinuity.] Use equation (4.53) to determine the force on a tiny sphere of radius \(a \), composed of linear dielectric material of susceptibility \(\chi_e \), which is situated a distance \(r \) from a fine wire carrying a uniform line charge \(\lambda \).

\(^9\) I thank Prof. M. Tiersten for pointing out this error in the first edition.

Tiersten\(^3\) states that the correct formulation is

\[
F = \int (P \cdot \nabla)E_{\text{ext}} d\tau = \int (P \cdot \nabla)E d\tau + \frac{1}{2\varepsilon_0} \int (P \cdot \hat{n})^2 \hat{n} da \tag{2}
\]
and mentions a couple of example problems.

In the appendix of Zakharian et al. (see also Barnett and Loudon) there is a discussion of issues associated with the discontinuity of \mathbf{E}_\perp at the boundary. Mansuripur states:

The basic problem is as follows: At the surface of a dielectric material, there is a discontinuity in the perpendicular component of the E-field (due to the presence of bound electric charges at the surface). Now, a dipole sitting just beneath the surface (and perpendicular to it) experiences a force on its positive end (which, we assume is located exactly at the dielectric surface), and also on its negative end (which is a little bit below the surface). The force on the negative end of the dipole is thus due to the local E-field, whatever that field happens to be. This E-field, of course, is the total field, which is the sum of the external and internal fields at the location of the negative end of the dipole under consideration. In contrast, the positive end of the dipole sees two different E-fields, one just above the surface, the other just below the surface – because, you recall, the E-field at this location is discontinuous. If you now use the average value of the E-field at the surface (i.e., $\frac{1}{2}$ of the sum of the E-fields immediately above and immediately below the surface), you'll find the correct E-field acting on the positive end of the dipole. The need for this averaging arises because the (bound) surface charges produce a perpendicular E-field that changes direction (but not magnitude) upon crossing the surface. Averaging cancels out this “self E-field,” and leaves behind only the external E-field at the location of the surface.

Interestingly, they also look at two different forms of the Lorentz force density: one based on treating the medium as formed from individual charges (Eq. 3) and one based on the medium as formed from individual dipoles (Eq. 4).

$$f^c = -((\nabla \cdot \mathbf{P}) \mathbf{E} + \dot{\mathbf{P}} \times \mathbf{B}).$$ \hspace{1cm} (3)

$$f^d = (\mathbf{P} \cdot \nabla) \mathbf{E} + \dot{\mathbf{P}} \times \mathbf{B}. \hspace{1cm} (4)$$

They find that while the total forces and torques are identical, the force densities associated with the volumes and surfaces may be different.

The observations of Tiersten and Mansuripur can be reconciled. Griffiths and Hnizdo integrate Eq. 1 by parts and use the standard method of using the average of the \mathbf{E} field above and below a charged surface to get

$$\mathbf{F} = \int (-\nabla \cdot \mathbf{P}) Ed\tau + \int (\mathbf{P} \cdot \hat{n}) \frac{1}{2} (\mathbf{E}_{\text{above}} + \mathbf{E}_{\text{below}}) da . \hspace{1cm} (5)$$

Notice that the volumetric forces are not identical. They observe:
This raises a surprisingly delicate question: What do we mean by the “force density” inside the medium? Presumably we should (in the mind's eye) isolate an infinitesimal piece, of volume \(v \), determine the force on it, and divided by \(v \). But this little piece carries surface bound charge in addition to its volume bound charge, and it's easy to see … that the total force is precisely [Eq. 1 in this note]. Of course, in the bulk material the surface charge on \(v \) is canceled by that on the adjacent inner surface of the surrounding medium – there is no net “surface” charge within the substance – but if we're interested in the force on \(v \) alone, its surface charge must not be ignored. The force density … is incomplete, because it does not include this contribution.

Equation 2 may then be obtained by remembering that the \(E \) field is discontinuous at the surface of the dielectric due to the bound surface charge with the boundary condition

\[
E_{above} - E_{below} = \frac{\sigma}{\varepsilon_0} \hat{n} .
\]

(6)

Plugging in the boundary condition and noting that \(P \cdot \hat{n} = \sigma \) gives

\[
F = \int (-\nabla \cdot P) E d\tau + \int (P \cdot \hat{n}) \left(\frac{1}{2} \left(\frac{\sigma}{\varepsilon_0} \hat{n} + 2E_{below} \right) \right) da
\]

\[
= \int (-\nabla \cdot P) E d\tau + \int (P \cdot \hat{n}) \left(\frac{1}{2} \left(\frac{P \cdot \hat{n}}{\varepsilon_0} \hat{n} + 2E_{below} \right) \right) da
\]

\[
= \int (-\nabla \cdot P) E d\tau + \int (P \cdot \hat{n}) E_{below} da + \int \left(\frac{P \cdot \hat{n}^2}{2\varepsilon_0} \right) \hat{n} da .
\]

(7)

Unintegrating by parts the first two integrals gives

\[
F = \int (P \cdot \nabla) E d\tau + \frac{1}{2\varepsilon_0} \int (P \cdot \hat{n})^2 \hat{n} da ,
\]

(8)

where \(E \) is now understood to be the continuous part of the electric field within the body.

Setting \(4\pi \varepsilon_0 = 1 \) converts Eq. 8 in SI units to Eq. 9 in CGS units:

\[
F = \int (P \cdot \nabla) E d\tau + 2\pi \int (P \cdot \hat{n})^2 \hat{n} da .
\]

(CGS)

(9)

Examining the demonstration problem in Grinfeld and Grinfeld\(^1\), the surface integral provides an additional force contribution of \(2\pi \left(P_3^2(H) - P_3^2(0) \right) LW \), which exactly cancels out the non-zero force.
The earliest derivation of Eq. 9 that the author is aware of is from 1949. Smith-White8 uses the fact that the total force on a body is composed of body forces and surface tractions and calculates the surface traction directly.

Equation 1 is an improper integral and thus requires careful consideration. Integration by parts and E field averaging are standard tools, and the use of them does not call into question the validity of Eq. 1.
2. References

