An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure

by Kwok F Tom
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure

by Kwok F Tom

Sensors and Electron Devices Directorate, ARL
This report is the result of applying morphological image and statistical processing techniques to the energy detection scenario of signals in the RF spectrum domain. A semi-disk structure is applied to the spectral data to estimate the envelope of the spectral response in the frequency domain. A morphological “opening” operation is then applied to the spectral envelope to obtain some measure of the background noise. These series of techniques provide for an automatic algorithm for determining the RF spectral threshold detection level.

Subject Terms
RF spectrum, morphological image processing, detection threshold algorithm, opening, semi-disk structure
Contents

List of Figures v
List of Tables v
Preface vi

1. Introduction 1

2. Data Collection and Statistical Summary 1

3. Statistical Processing 2
 3.1 Statistical Analysis 2
 3.1.1 Moments 3
 3.1.2 Mean 3
 3.1.3 Variance 3
 3.1.4 Standard Deviation 3
 3.1.5 Kurtosis 4
 3.1.6 Maximum 4
 3.1.7 Minimum 4
 3.1.8 Median 4
 3.1.9 Rank Order Filter 4
 3.1.10 Crest Factor (CF) 5
 3.2 Statistical Summary 6

4. Morphological Image Processing 7

5. Algorithm 9

6. Conclusion 11

7. References 12

Appendix A. MATLAB Code 13
<table>
<thead>
<tr>
<th>Appendix B. Graphs of Morphological Processed RF Spectrum Files</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C. Graphs of RF Spectrum Files Calculated Detection Threshold</td>
<td>43</td>
</tr>
<tr>
<td>List of Symbols, Abbreviations, and Acronyms</td>
<td>61</td>
</tr>
<tr>
<td>Distribution List</td>
<td>62</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1 Dilation of spectral data file with semi-disk structure 10
Fig. 2 Close-in examination of dilated spectral data file 11

List of Tables

Table 1 Summary of the RF spectrum collection 2
Table 2 Statistical analysis of the RF spectrum measurements 7
Preface

Energy detection in the RF spectrum is the most basic technique for signal detection. Typically, this requires establishing an energy detection threshold based on a noise-only condition (i.e., no signal present in the RF spectrum). Initially, the area of exploration for this report was to examine the potential of an automatic energy detection thresholding algorithm based on the RF measurement. It would not require the preliminary RF spectrum noise-only measurements to establish the energy detection threshold.

The technique of “opening” was very successful in determining an energy detection threshold for the RF spectrum with signal and noise-only environments. After examining the results of the energy detection algorithm, a second algorithm that incorporated a semi-disk structure on RF spectrum was developed. The windowing of the RF spectral data with this semi-disk structure had the benefit of reducing the number of false alarms on noise. This is the second of 5 reports that detail the energy detection techniques examined with the recorded RF spectrum measurements.¹⁻⁴

Approved for public release; distribution is unlimited.
1. Introduction

Energy detection is the simplest method of detecting a signal in the frequency spectrum. When doing so, a comparison is made between the frequency spectral component energy and a detection threshold level. Knowledge of the frequency spectrum is usually necessary to establish this detection threshold level. Various methods can be used to determine the detection threshold level, such as establishing the system noise statistics offline and setting the threshold for a given probability of detection versus probability of false alarm.

The goal of this study was to develop an algorithm that can analyze the frequency spectrum and establish a threshold value based on the spectral data. The automated processing employs techniques from image processing and statistical analysis. A combination of techniques from these 2 areas resulted in an algorithm for determining a threshold detection level. In this evaluation, a dilation of the spectral data was performed with a semi-disk structure. This operation provided an estimate of the spectral data envelope in the frequency domain. Morphological filtering was then applied to the spectral envelope data to establish a noise level. The morphological filtering, consisting of erosion and dilation, is repeatedly applied to the spectral envelope data until certain statistical criteria are met. An offset was then added to the morphological filtered data to form the threshold for energy detection.

2. Data Collection and Statistical Summary

The local RF spectrum was measured in 2013 on the rooftop of building 204 at the US Army Research Laboratory’s (ARL’s) Adelphi location. An Agilent N9342CN spectrum analyzer and a Discone antenna was used to collect RF spectrum data. This spectrum analyzer was operated under the control of a LabVIEW software program to acquire and store data with different resolution bandwidth (RBW) from 1 kHz to 1 MHz.

These data files represent various sizes of RF spectral coverage from 10 MHz up to 4 GHz. The number of data files for each spectral band varied. The larger RBW files were acquired over seconds of data acquisition time versus the small RBW files. Small RBW provides fine spectral resolution, but it impacts data acquisition time for spectral coverage and data size. Depending on the RBW and spectral coverage, a data file could require a few hours of acquisition.

Table 1 summarizes the data collection measurement files. The RF spectral bands covered the spectrum from 10 MHz to 4 GHz. In general, various spectral bands
were measured with 4 RBW configuration. Data file size is inversely proportional to the RBW. Data file size is proportional to the spectral band coverage. The data size varied from approximately 1 KSample to 4 MSample data points per file.

<table>
<thead>
<tr>
<th>Spectral band coverage</th>
<th>Number of RBW measurement</th>
<th>RBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1–1.6 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>2–3 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>3–4 GHz</td>
<td>3</td>
<td>10 kHz, 100 kHz, 1 MHz</td>
</tr>
<tr>
<td>4–6 GHz</td>
<td>3</td>
<td>10 kHz, 100 kHz, 1 MHz</td>
</tr>
<tr>
<td>10 MHz–1 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>10 MHz–2 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>10 MHz–3 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>10 MHz–4 GHz</td>
<td>4</td>
<td>1 kHz, 10 kHz, 100 kHz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
</tr>
<tr>
<td>100 MHz–1 GHz</td>
<td>1</td>
<td>100 kHz</td>
</tr>
</tbody>
</table>

3. Statistical Processing

3.1 Statistical Analysis

Statistical analysis is the mathematical science dealing with the analysis or interpretation of data. The data analyst uses a few straightforward statistical techniques as a means of summarizing the collected data. These statistical techniques are under the area of descriptive statistics, which is a methodology to condense the data in quantitative terms.

In commercial prognostics and diagnostic vibrational monitoring applications, statistical techniques that are mainly used for alarm purposes in industrial plants are the statistical moments of order 2, 3, and 4. The probability density function (PDF) of the vibrational time series of a good bearing has a Gaussian distribution (also known as a normal distribution), whereas a damaged bearing results in a non-Gaussian distribution with dominant tails because of a relative increase in the number of high levels of acceleration. These techniques can be applied to the RF spectral data with a different interpretation of the results.1
3.1.1 Moments
If these moments are calculated about the mean, they are called central statistical moments. The first and second moments are well known, being the mean and the variance, respectively. These are analogous to the first and second area moments of inertia with the area shape defined by the PDF. The third moment is termed skewness and the fourth moment is termed kurtosis. The general equation for the order of moment is as follows:

\[M_p = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^p, \]

where \(p \) is the order of the moment,
\(N \) is the number of data value,
\(i \) is the index of the data value, and
\(\overline{x} \) is the mean value of the data set.

3.1.2 Mean
Mean is the most common measure of a statistical distribution. In this case, mean is the arithmetic average for a set of measurements.

\[\overline{x} = \mu = \frac{1}{N} \sum_{i=1}^{N} x_i. \]

3.1.3 Variance
Variance is a measure of the dispersion of a waveform about its mean—also called the second moment of the measurements.

\[\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2. \]

3.1.4 Standard Deviation
Standard deviation is a measure of the variation of a set of data values. The standard deviation is defined as the square root of the variance moment.
\[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]

3.1.5 Kurtosis

Kurtosis is the fourth statistical moment, normalized by the standard deviation to the fourth power. It is a measure of whether the data are peaked or flat relative to a normal distribution. The noise in the RF spectrum is typically considered to have a normal distribution. The normal distribution has a value of 3.

\[\kappa = \frac{M_4}{\sigma^4} \]

\[\kappa = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \bar{x})^4}{\sigma^4} \]

\[\kappa = \frac{1}{N\sigma^4} \sum_{i=1}^{N} (x_i - \bar{x})^4 \]

3.1.6 Maximum

“Max” is the largest value of a set of numbers.

\[y = \max[x(n)] \]

3.1.7 Minimum

“Min” is the smallest value of a set of numbers.

\[y = \min[x(n)] \]

3.1.8 Median

The statistical median is an order statistic that gives the “middle” value of a set of samples. Median is the middle value of a set of data values that divides the set into 2 groups. Half the groups exist below and half exist above this value.

3.1.9 Rank Order Filter

Rank order filter is a sorting process by which a set of numbers is ordered from the smallest to the largest value. Rank order filtering is a nonlinear filtering technique that orders the contents of a filter kernel and selects the sample indexed by rank from the magnitude ordered samples.
Rank order filtering can be summarized as follows:

\[y = \sum_{i=1}^{N} a_i \bar{x}_i \]

where \(\bar{x}_i \), \(i = 1, \ldots, N \) is the result of sorting the data in ascending order. With this definition, the max, min, and median can be obtained from a rank order filter as follows:\(^2\):

Min:

\[y = \sum_{i=1}^{N} a_i \bar{x}_i \]

\[a_i = 1 \text{ for } i = 1 \]

\[0 \text{ otherwise} \]

Max:

\[y = \sum_{i=1}^{N} a_i \bar{x}_i \]

\[a_i = 1 \text{ for } i = N \]

\[0 \text{ otherwise} \]

Median:

\[y = \sum_{i=1}^{N} a_i \bar{x}_i \]

\[a_i = 1 \text{ for } i = \frac{N}{2} \]

\[0 \text{ otherwise} \]

3.1.10 Crest Factor (CF)

Crest factor (CF) is a measure of a waveform showing the ratio of peak values to the effective value. In other words, CF indicates how extreme the peaks are in a waveform.

\[\text{Crest Factor} = \frac{|x|_{\text{peak}}}{x_{\text{rms}}}. \]

Noise sources are characterized by their CF, which is the peak to average ratio of the noise. In a technical bulletin, XiTRON reported CF values between 5 and 7 for random noise.\(^3\) For example, a 5:1 CF of the noise voltage is 20\(\log 5 = 14\) dB. This is a measure of the quality of the noise distributions and one way to measure its
Gaussian nature. For the purpose of algorithm development, the CF equation was modified as follows:

\[
\text{Crest Factor} = \frac{\text{Max}}{\text{Median}}.
\]

3.2 Statistical Summary

There were 31 different groupings of the RF spectrum data measurements. The number of data files under each of the main groupings was varied. For the purpose of developing the algorithm, only a single data file was selected from each group. Each data file was processed to obtain the following characteristics: RBW, mean, standard deviation, median, max, min, kurtosis, and CF. A summary of the results is in Table 2.

The following results were noted:

- The smaller the RBW, the lower the noise floor. The equation for thermal noise power is \(P = kTB \), where \(B \) is bandwidth. In this case, the RBW of 1 kHz has the lowest noise value. The RBW of 1 MHz has the highest noise value.

- Each 10-fold increase in bandwidth results in a 10-dB increase in noise power. This relationship is illustrated in this data set.

- The calculated mean and median values are very close for a given RF measurement configuration.

- The CF for noise-only data files was on the order of approximately 10 to 13. Noise-only data files were estimated by visually inspecting the spectrum plot.
4. Morphological Image Processing

A description of a technique for automatically estimating the noise floor spectrum was given in a conference back in 1997.5 This technique is based on applying the morphological binary image processing operators to the RF spectrum. The technique works well in both flat and nonflat noise floor spectra. Morphology image processing is a set of nonlinear operations. Ready et al. note that “humans are good at estimating the noise floor spectrum by ‘eyeballing’ a spectral plot. Intuitively, we separate the spectral humps from the noise floor spectrum by eliminating those parts of the spectrum shape that are due to signals and visually draw in the noise floor spectrum.”5

Morphology is a broad set of processing techniques that process images based on shapes. Morphological operations apply a structuring element to an input image, creating an output image of the same size. In a morphological operation, the value of each pixel in the output image is based on a comparison of the corresponding pixel in the input image with its neighbors. By choosing the size and shape of the

Table 1 Statistical analysis of the RF spectrum measurements

<table>
<thead>
<tr>
<th>Filename</th>
<th>Spectral Band</th>
<th>RBW</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Max</th>
<th>Min</th>
<th>Kurtosis</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air_test_1GHz_1.6GHzb_03_28_14_06_33_22</td>
<td>1.1 - 1.6 GHz</td>
<td>1000</td>
<td>-112.694</td>
<td>3.8444</td>
<td>-112.3</td>
<td>-101.2</td>
<td>-138.4</td>
<td>3.5571</td>
<td>11.1</td>
</tr>
<tr>
<td>Air_test_1GHz_1.6GHzc_03_27_14_07_14_05</td>
<td>1.1 - 1.6 GHz</td>
<td>10000</td>
<td>-102.12</td>
<td>3.7226</td>
<td>-101.8</td>
<td>-91.69</td>
<td>-138.4</td>
<td>3.5134</td>
<td>10.11</td>
</tr>
<tr>
<td>Air_test_1GHz_1.6Hzd_04_01_14_06_54_03</td>
<td>1.1 - 1.6 GHz</td>
<td>100000</td>
<td>-80.5634</td>
<td>3.5741</td>
<td>-80.745</td>
<td>-55.36</td>
<td>-89.8</td>
<td>14.6861</td>
<td>25.385</td>
</tr>
<tr>
<td>Air_test_2GHz_3GHza_05_14_07_15_58</td>
<td>2 - 3 GHz</td>
<td>1000</td>
<td>-111.219</td>
<td>4.4991</td>
<td>-111.1</td>
<td>-77.55</td>
<td>-139</td>
<td>6.8918</td>
<td>33.55</td>
</tr>
<tr>
<td>Air_test_2GHz_3GHzc_05_14_07_14_09_27</td>
<td>2 - 3 GHz</td>
<td>100000</td>
<td>-89.6014</td>
<td>3.7053</td>
<td>-89.68</td>
<td>-68.5</td>
<td>-98.8</td>
<td>14.4646</td>
<td>20.86</td>
</tr>
<tr>
<td>Air_test_4GHz_6GHza_04_10_14_07_01_22</td>
<td>4 - 6 GHz</td>
<td>1000</td>
<td>-107.559</td>
<td>4.1793</td>
<td>-107.3</td>
<td>-94.3</td>
<td>-136.3</td>
<td>3.3081</td>
<td>12.89</td>
</tr>
<tr>
<td>Air_test_4GHz_6GHzb_04_11_14_06_10_18</td>
<td>4 - 6 GHz</td>
<td>100000</td>
<td>-97.245</td>
<td>4.0398</td>
<td>-96.95</td>
<td>-89.6</td>
<td>-123.7</td>
<td>3.4581</td>
<td>10.52</td>
</tr>
<tr>
<td>Air_test_4GHz_6GHzc_04_15_14_07_01_09</td>
<td>4 - 6 GHz</td>
<td>1000000</td>
<td>-85.9125</td>
<td>3.082</td>
<td>-85.77</td>
<td>-72.7</td>
<td>-138.5</td>
<td>9.5085</td>
<td>84.76</td>
</tr>
<tr>
<td>Air_test_5GHz_10GHza_03_28_14_06_33_22</td>
<td>5 - 10 GHz</td>
<td>10000</td>
<td>-88.5666</td>
<td>3.4154</td>
<td>-89.68</td>
<td>-64.2</td>
<td>-122</td>
<td>6.1891</td>
<td>33.55</td>
</tr>
<tr>
<td>Air_test_5GHz_10GHzb_03_29_14_06_28_28</td>
<td>5 - 10 GHz</td>
<td>100000</td>
<td>-100.168</td>
<td>8.4775</td>
<td>-102</td>
<td>-89</td>
<td>-126.7</td>
<td>6.7602</td>
<td>74.05</td>
</tr>
<tr>
<td>Air_test_5GHz_10GHzc_03_30_14_06_33_23</td>
<td>5 - 10 GHz</td>
<td>1000000</td>
<td>-87.948</td>
<td>8.8113</td>
<td>-90.74</td>
<td>-82</td>
<td>-138.5</td>
<td>9.5085</td>
<td>82.72</td>
</tr>
<tr>
<td>Air_test_5GHz_10GHzd_03_31_14_06_33_24</td>
<td>5 - 10 GHz</td>
<td>1000000</td>
<td>-78.1054</td>
<td>8.3327</td>
<td>-79.6</td>
<td>-72.7</td>
<td>-138.5</td>
<td>9.5085</td>
<td>82.72</td>
</tr>
<tr>
<td>Air_test_10MHz_2GHzd_03_06_14_08_52_04</td>
<td>10 MHz - 2 GHz</td>
<td>100000</td>
<td>-89.242</td>
<td>6.7487</td>
<td>-90.74</td>
<td>-72.8</td>
<td>-138.5</td>
<td>9.5085</td>
<td>82.72</td>
</tr>
<tr>
<td>Air_test_10MHz_2GHzb_03_08_14_06_33_25</td>
<td>10 MHz - 2 GHz</td>
<td>100000</td>
<td>-88.924</td>
<td>6.4787</td>
<td>-90.59</td>
<td>-72.8</td>
<td>-138.5</td>
<td>9.5085</td>
<td>82.72</td>
</tr>
<tr>
<td>Air_test_10MHz_2GHzc_03_09_14_06_33_26</td>
<td>10 MHz - 2 GHz</td>
<td>100000</td>
<td>-88.127</td>
<td>6.9798</td>
<td>-91.21</td>
<td>-72.8</td>
<td>-138.5</td>
<td>9.5085</td>
<td>82.72</td>
</tr>
</tbody>
</table>
neighborhood, you can construct a morphological operation that is sensitive to specific shapes in the input image.

The most basic morphological operations are dilation and erosion. Dilation adds pixels to the boundaries of the objects in an image, while erosion removes pixels on object boundaries. The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring element used to process the image. In the morphological dilation and erosion operations, the state of any given pixel in the output image is determined by applying a rule to the corresponding pixel and its neighbors in the input image. These rules are known as the erosion and dilation:

Erosion:

\[
A \ominus B = \bigcap_{b \in B} A_{-b}.
\]

Dilation:

\[
A \oplus B = \bigcup_{a \in A} B_{a}.
\]

The opening of \(A \) by \(B \) is obtained by the dilation of \(A \) by \(B \), followed by erosion of the resulting structure by \(B \).

Opening:

\[
A \circ B = (A \ominus B) \oplus B.
\]

The application of the opening technique on the RF spectrum is the basis for noise floor estimation. The estimation of the noise floor is used as a reference level to set a threshold detection level.\(^6\)

In signal, statistical, and image processing, the minimum and maximum operators are typically encountered. Gil and Kimmel note, “In mathematical morphology, the result of such an operator is referred to as the erosion (or dilation) of the signal with a structuring element given by a pulse of width \(p \).”\(^7\)

For the 1-D case, this reduces to a simple filter of just providing the max or min value of a set of values.\(^7\)

1-D max filter: Given a sequence \(x_0, \ldots, x_{n-1} \) and an integer \(p > 1 \), compute

\[
y_i = \max_{0 \leq j < p} x_{i+j}
\]

for \(i = 0, \ldots, n - p \).
1-D min filter: Given a sequence \(x_0, \cdots, x_{n-1} \) and an integer \(p > 1 \), compute

\[
 y_i = \min_{0 \leq j < p} x_{i+j}
\]

for \(i = 0, \cdots, n-p \).

5. Algorithm

The algorithm development process was executed in MATLAB. Appendix A is the code used to process and generate the enclosed RF spectrum signature with the corresponding results of the morphological processing and resultant threshold detection level. The following is a description of the thresholding detection level generation based on morphological filter processing:

1) Determine the RBW of the spectral data.

2) Determine some statistics on the spectral data file: median, max, and CF.

3) Form an array based on a semi-disk. This array represents an 8-segment structure of a semi-disk at an arc of 22.5°.

4) Using the semi-disk structure, dilate the spectral data file. At each point in the origin spectral data, the data array of the semi-disk is added to the spectral data, and the maximum value saved. Figure 1 is a graph of a spectral data file with the dilated data overlaid on the spectral data file. The blue color is the measured spectral data, and the red color is the dilated results. Note how the dilated file follows the maximum envelop of the spectral data. Figure 2 is a zoomed-in section of this data file. One can see that valleys tend to be filled, and the RF spectral data take on a repeated semi-disk pattern.

5) Perform an erosion operation on the semi-disk dilated spectral data as computed in step 4. Starting from the lowest-frequency component, create the eroded spectral array with an initial sliding window of size 2. Basically, calculate the minimum value for the given window size, fill in that position, and shift the processing window one frequency position to calculate the next value. Continue on across the entire semi-disk spectral data array. For the last value, use the previous valid value that is calculated.

6) Perform a dilation operation on the eroded spectral array as calculated in step 5. In this case, the calculations are performed starting at the highest frequency and continue to the lowest frequency. Dilation is simply the maximum value in the windowed data set. The initial window size is 2.
this case, the maximum value is determined from the sliding window data and used to create the dilated spectral array.

7) Calculate statistics on the dilated spectral array from step 6: mean, median, max, and CF.

8) Repeat the morphological filtering of erosion and dilation on the spectral array by increasing the window size by 1 for every pass. For example, on the second pass, the window size is 3 for erosion and dilation operations. Continue with the morphological filtering process as long as the CF is greater than 10 and the mean power greater than 0.01 on each pass of the morphological filtering.

9) If the CF is not greater than 10, then perform the morphological filtering operations until the average power is greater than 0.01.

10) Once the convergence has been met, use the resulting morphological filtered data array (i.e., the dilated spectral array) to form the threshold as follows:

\[
\text{Threshold} = \frac{\text{Morphological Filtered Spectral Array} + 25 - 2.9 \times 10^{\log_{10}\left(\frac{\text{RBW}}{1000}\right)}}{\text{Frequency (MHz)}}
\]

Fig. 1 Dilation of spectral data file with semi-disk structure
6. Conclusion

It is possible to estimate the energy detection threshold level based on morphological filtering.

Appendix B displays the graphs of the morphological processing for each of the selected RF spectrum data files. The red curve is the result of the morphological processing overlaid on top of the RF spectrum signature.

Appendix C displays the results of the threshold overlaid on top of the RF spectrum signature. The graphs are intended to provide the reader a qualitative sense of the effectiveness of the automatic enhanced threshold generation algorithm. Reduction in false alarms (over just morphological filtering case) can be achieved with an initial dilation of the spectral data with a semi-disk structure. Actual processing time and the number of iterations through the morphological filtering routine are highly dependent on the RBW and spectral coverage band. A small RBW over a large coverage band requires more time to complete the process. The threshold detection level obtained works well for signals present or noise-only RF spectrum data files. The red curve is the threshold when added to the morphological processed array as shown in Appendix B.

Overall, a visual inspection of the graphs shows that the algorithm works well. Further refinement of the algorithm is necessary to address potential issues related to the boundary edge of the spectral data file. The stop criteria for the morphological filtering and thresholding equation can be optimized further to reduce the false alarm detections.
7. References

Appendix A. MATLAB Code
function DiskMorphologicalFilterDetection5report()

% Make selection for data file to process
% SELECT = 1 to 31

SELECT = 1;

dir(1) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_1.1GHz_1.6GHza\';
filename{1} = 'Air_test_1.1GHz_1.6GHza_03_27_14_07_14_05';

dir(2) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_1.1GHz_1.6GHzb\';
filename{2} = 'Air_test_1.1GHz_1.6GHzb_03_28_14_06_33_22';

dir(3) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_1.1GHz_1.6GHzc\';
filename{3} = 'Air_test_1.1GHz_1.6GHzc_03_31_14_06_47_26';

dir(4) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_1.1GHz_1.6GHzd\';
filename{4} = 'Air_test_1.1GHz_1.6GHzd_04_01_14_06_54_03';

dir(5) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_2GHz_3GHza\';
filename{5} = 'Air_test_2GHz_3GHza_05_14_07_15_58';

dir(6) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_2GHz_3GHzb\';
filename{6} = 'Air_test_2GHz_3GHzb_05_29_14_06_28_28';

dir(7) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_2GHz_3GHzc\';
filename{7} = 'Air_test_2GHz_3GHzc_05_29_14_04_09_27';

dir(8) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_2GHz_3GHzd\';
filename{8} = 'Air_test_2GHz_3GHzd_05_28_14_00_06_18';

dir(9) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_3GHz_4GHza\';
filename{9} = 'Air_test_3GHz_4GHza_06_12_14_06_30_17';

dir(10) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_3GHz_4GHzb\';
filename{10} = 'Air_test_3GHz_4GHzb_06_11_14_06_44_40';

dir(11) = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_3GHz_4GHzd\';
filename{11} = 'Air_test_3GHz_4GHzd_06_09_14_07_09_51';
dir{12} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_4GHz_6GHza\';
filename{12} = 'Air_test_4GHz_6GHza_04_24_I4_07_05_26';

dir{13} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_4GHz_6GHzb\';
filename{13} = 'Air_test_4GHz_6GHzb_04_28_I4_06_23_12';

dir{14} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_4GHz_6GHzc\';
filename{14} = 'Air_test_4GHz_6GHzc_04_29_I4_06_48_42';

dir{15} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_1GHza\';
filename{15} = 'Air_test_10MHz_1GHza_04_17_I4_07_09_30';

dir{16} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_1GHzb\';
filename{16} = 'Air_test_10MHz_1GHzb_04_21_I4_07_17_44';

dir{17} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_1GHzc\';
filename{17} = 'Air_test_10MHz_1GHzc_04_22_I4_06_39_58';

dir{18} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_2GHzd\';
filename{18} = 'Air_test_10MHz_2GHzd_04_23_I4_06_36_16';

dir{19} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_2GHz\';
filename{19} = 'Air_test_10MHz_2GHz_02_20_I4_06_55_36';

dir{20} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_2GHzB\';
filename{20} = 'Air_test_10MHz_2GHzB_02_25_I4_06_35_53';

dir{21} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_2GHzC\';
filename{21} = 'Air_test_10MHz_2GHzC_02_27_I4_06_43_55';

dir{22} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_2GHzd\';
filename{22} = 'Air_test_10MHz_2GHzd_03_06_I4_08_52_04';

dir{23} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_3GHz\';
filename{23} = 'Air_test_10MHz_3GHz_03_11_I4_06_32_51';

dir{24} = 'K:\CognitiveRadar\spectrum
monitoring\data\building204-4c085\Air_test_10MHz_3GHzB\';
filename{24} = 'Air_test_10MHz_3GHzB_03_13_I4_06_32_45';
dir{25} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_3GHzC\';
filename{25} = 'Air_test_10MHz_3GHzC_03_18_14_06_32_08';

dir{26} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_3GHzd\';
filename{26} = 'Air_test_10MHz_3GHzd_03_20_14_08_09_07';

dir{27} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_4GHza\';
filename{27} = 'Air_test_10MHz_4GHza_04_10_14_07_01_22';

dir{28} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_4GHzb\';
filename{28} = 'Air_test_10MHz_4GHzb_04_11_14_06_10_18';

dir{29} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_4GHzc\';
filename{29} = 'Air_test_10MHz_4GHzc_04_15_14_07_01_09';

dir{30} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_10MHz_4GHzd\';
filename{30} = 'Air_test_10MHz_4GHzd_04_16_14_06_42_27';

dir{31} = 'K:\CognitiveRadar\spectrum monitoring\data\building204-4c085\Air_test_100MHz_1GHz\';
filename{31} = 'Air_test_100MHz_1GHz_02_19_14_07_20_46';

str_meta = sprintf('%s%s.mspecrawdata',dir{SELECT},filename{SELECT});
str_data = sprintf('%s%s.specrawdata',dir{SELECT},filename{SELECT});

% Get metadata on selected data file

fid_meta = fopen(str_meta);
META = textscan(fid_meta,'%s');
ave = META{1}{1};
ref = META{1}{2};
attn = META{1}{3};
rbw = META{1}{4};

% Read in data file

fid_data = fopen(str_data);
g=0;
f=0;
a=0;

while(g==0)
 ft=fgetl(fid_data);
 [f,str2num(ft)];
 at=fgetl(fid_data);
a = [a, str2num(at)];
g = feof(fid_data);

end

f = f(2:end);
a = a(2:end);
InputIndex = length(a);
display (InputIndex);
InputArray = a;

% Determine resolution bandwidth
Bandwidth = f(3) - f(2);

% Plot data file
figure(1);
plot(f/1e6, a);
axis tight;
grid;
xlabel('Frequency (MHz)');
ylabel('Power (dBm)');
title(strcat(rbw, '--', ave, '--', ref, '--', ' , attn), 'Interpreter', 'none');

% Determine some statistics values for data
M = mean(a);
Med = median(a);
S = std(a);
Max = max(a);
Min = min(a);
Kurt = kurtosis(a);
Range = abs(Min - Max);
Number = floor(Range);
Bins = Number * 2;
disp([M S Med Max Min Kurt]);

% Generate semi-disk structure
 part = 8;
radius = 3;
 for i = 0: part
ang = i*22.5;
x = radius * cosd(ang);
y = radius * sind(ang);
xarray(i+1) = x;
yarray(i+1) = y;
end

diskarray = -1*yarray;

for m = 1:InputIndex
 InputArray(m+part/2) = a(m);
end

for m = 1:part/2
 InputArray(m) = Min;
end

NewInputArray = length(InputArray);
for m = 1:part/2
 InputArray(NewInputArray+m) = Min;
end

TempTopHatArray = InputArray;
j=part;

% Apply semi-disk structure to RF spectrum

for k = 1:InputIndex
 arraysum = InputArray(k:k+j)+ diskarray;
 TempTopHatArray(k) = max(arraysum);
end
NewInputArray = length(TempTopHatArray);

display(NewInputArray)

for m = 1:InputIndex
 TopHatArray(m) = TempTopHatArray(m+part/2);
end

Approved for public release; distribution is unlimited.
CountTopHat = length(TopHatArray);
display(CountTopHat);

% Plot RF spectrum with semi-disk structure applied
 figure(20);
 plot(TopHatArray);

% Plot original RF spectrum with overlay of the RF spectrum with the % semi-disk structure applied
 figure(30);
 plot(f/1e6,a);
 axis tight;
 grid;
 xlabel('Frequency (MHz)');
 ylabel('Power (dBm)');
 title(strcat(rbw,'--',ave,'--',ref,'--',attn),'Interpreter','none');
 hold on
 plot(f/1e6,TopHatArray,'r');
 hold off;

ErosionIndex = 1;
ErosionArray = a;
DilationArray = a;
InputArray = TopHatArray;

% Plot RF spectrum with semi-disk structure applied
 figure(2);
plot(InputArray);

PreviousPower = sum(a)/InputIndex;

display (PreviousPower);

% Initialize parameters

j = 1;
DiffPower = 1;

DilationMedian = Med;
DilationMax = Max;
DilationCF = DilationMax-DilationMedian;

if DilationCF > 10 && j == 1
 display('CF');

% Perform Erosion operation on data file
 while DilationCF > 10
 for k = 1:InputIndex-j
 ErosionArray(k) = min(InputArray(k:k+j));
 end

 for k = InputIndex-j:InputIndex
 ErosionArray(k) = InputArray(InputIndex-j);
 end

% Plot results of Erosion operation
 figure(5);
 plot(ErosionArray);

% Perform Dilation operation on data file
 DilationArray = ErosionArray;
 for k = InputIndex:j+1
 DilationArray(k) = max(ErosionArray(k-j:k));
 end
for k = j:1
 DilationArray(k) = ErosionArray(j+1);
end

% Plot results of Dilation operation

InputArray = DilationArray;
figure(6);
plot(DilationArray);

DilationPower = sum(DilationArray)/InputIndex;
DilationMedian = median(DilationArray);
DilationMax = max(DilationArray);

DiffPower = abs(PreviousPower - DilationPower);
DilationCF = DilationMax - DilationMedian;

display ([j DilationPower DilationMedian DilationMax
 DilationCF DiffPower]);
PreviousPower = DilationPower;
j = j+1;
end

% Check performance of the Erosion & Dilation to see if
% operations resulted have converged to accept criteria (If power
difference in
% the RF spectrum is less than 0.1 between iterations previous
and
% current processing of RF spectrum

while DiffPower > 0.1
 display('CF & Power');

 for k = 1:InputIndex-j
 ErosionArray(k) = min(InputArray(k:k+j));
 end
 for k = InputIndex-j:InputIndex
 ErosionArray(k) = min(InputArray(k:InputIndex));
 end

 display('CF & Power');
end
figure(5); plot(ErosionArray);

DilationArray = ErosionArray;

for k = InputIndex:j+1
 DilationArray(k) = max(ErosionArray(k-j:k));
end

for k = j:1
 DilationArray(k) = max(ErosionArray(k:1));
end

InputArray = DilationArray;
figure(6); plot(DilationArray);

DilationPower = sum(DilationArray)/InputIndex;
DilationMedian = median(DilationArray);
DilationMax = max(DilationArray);

DiffPower = abs(PreviousPower - DilationPower);
DilationCF = DilationMax-DilationMedian;

display ([j DilationPower DilationMedian DilationMax
 DilationCF DiffPower]);
 PreviousPower = DilationPower;
 j= j+1;
end
else
 while DiffPower > 0.1

 display('Power');

 for k = 1:InputIndex-j
 ErosionArray(k) = min(InputArray(k:k+j));
 end

 for k = InputIndex-j:InputIndex
 ErosionArray(k) = min(InputArray(k:InputIndex));
end

Approved for public release; distribution is unlimited.
DilationArray = ErosionArray;

for k = InputIndex:j+1
 DilationArray(k) = max(ErosionArray(k-j:k));
end

for k = j:1
 DilationArray(k) = max(ErosionArray(k:1));
end

InputArray = DilationArray;
figure(6);
plot(DilationArray);

DilationPower = sum(DilationArray)/InputIndex;
DilationMedian = median(DilationArray);
DilationMax = max(DilationArray);

DiffPower = abs(PreviousPower - DilationPower);
DilationCF = DilationMax - DilationMedian;

display ([j DilationPower DilationMedian DilationMax
 DilationCF DiffPower]);
 PreviousPower = DilationPower;
 j = j+1;
end

end

% Plot original RF spectrum and threshold
figure(3);

plot(f/1e6,a);
axis tight;

grid;
xlabel('Frequency (MHz)');
ylabel('Power (dBm)');
title(strcat(filename(SELECT), ' -- ', rbw, ' Hz'), 'Interpreter', 'none');
hold on

% Determine threshold array

Threshold = DilationArray+25-(2.9*log10(Bandwidth));
plot(f/1e6,Threshold,'r');

hold off;

% Plot original RF spectrum and final results of Erosion & Dilation % processing

figure(10);

plot(f/1e6,a);
axis tight;
grid;
xlabel('Frequency (MHz)');
ylabel('Power (dBm)');

end
Appendix B. Graphs of Morphological Processed RF Spectrum Files
Air_test_3GHz_4GHzd_06_09_14_07_09_51 --rbw=1000000 Hz

Air_test_4GHz_6GHza_04_24_14_07_05_26 --rbw=1000 Hz

Approved for public release; distribution is unlimited.
Appendix C. Graphs of RF Spectrum Files Calculated Detection Threshold
Approved for public release; distribution is unlimited.
Approved for public release; distribution is unlimited.
Air_test_10MHz_2GHzd_03_06_14_08_52_04 --rbw=1000 Hz

Air_test_10MHz_2GHzC_02_27_14_06_43_55 --rbw=10000 Hz

Approved for public release; distribution is unlimited.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL</td>
<td>US Army Research Laboratory</td>
</tr>
<tr>
<td>CF</td>
<td>crest factor</td>
</tr>
<tr>
<td>GHz</td>
<td>gigahertz</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>RBW</td>
<td>resolution bandwidth</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
</tbody>
</table>