Real Time RF Propagation

Research Objective
• Development of validated physical layer models for real time RF propagation in environments of interest
 • Pico-cell to brigade areas of operation
 • New predictive capabilities for cognitive radios, intelligent jamming, waveform development

Challenges
• High fidelity RF propagation calculations for multiple use cases.
 • From pico-cell single building interiors to large areas of operation covering 1000's of square km
 • Simulation of high data rate waveforms
 • Virtualization (packets/second, real time OS, etc.)

Complementary Expertise/ Facilities/ Capabilities Sought in Collaboration
• ARL has developed a number of RF propagation algorithms for GPUs and parallel computing systems such as Longley-Rice and Ray-Tracing
• ARL has a number of HPC systems available for development efforts and collaboration
• ARL is looking to collaborate on the development of full wave EM propagation algorithms for hybrid architectures
• ARL has extensive expertise in hi-fidelity mobile ad-hoc network simulation of traditional waveforms
 • We would like to begin developing advanced models for EW (Electronic Warfare) such as intelligent jammers, Software Defined Radios/GNU radio, etc.
• ARL has expertise in computing MOPs (Measures of Performance) for understanding network performance such as latency, jitter, throughput
 • We would like to develop new MOEs (Measures of Effectiveness), e.g. PESQ or POLQA for VoIP

ARL Facilities and Capabilities Available to Support Collaborative Research
• ARL maintains a hybrid GPU/CPU system dedicated to network simulation and emulation
• The system resides in a unique enclave allowing for simulation and code execution in a closed environment

S&T Campaign: Computational Sciences
Data Intensive Computing

Dr. Brian J. Henz, (410) 278-6531
Brian.j.henz.civ@mail.mil