
Performance Optimized Methods
for Heterogeneous Architectures

Jamie Infantolino, (410)278-7121
jamie.k.infantolino.ctr@mail.mil

S&T Campaign: Computational Sciences
 Computing Sciences

Research Objective
• Develop a novel, portable software package to

automatically tune commonly used kernels to enable
benchmarking of arbitrary compute platforms

• Discover new methods that allow developers to make a
more informed selection of architecture-specific
optimization techniques.

• Identify processor architecture improvements that can
better address algorithmic bottlenecks.

• Drive computing resource acquisitions based on
intended application.

Challenges
• Widely divergent processing core types.
• Lack of performance portability across heterogeneous

computing platforms.
• Projection of known optimizations on one core type fails

on another.
• New and emerging hardware require architecture

specific optimization techniques and software rewrite.

ARL Facilities and Capabilities Available
to Support Collaborative Research

• Leverage state-of-the-art hybrid computing systems at
ARL.

• 48 IBM dx360M4 nodes, each with one Intel Phi 5110P
and 16 dx360M4 nodes each with one NVIDIA Kepler
K20M GPU.

• Extensive expertise in accelerator programming
• A first-of-its-kind heterogeneous benchmarking suite.
• A portable and extendable benchmarking suite to address

processing cores used in fixed and mobile heterogeneous
computing assets.

Complementary Expertise/ Facilities/
Capabilities Sought in Collaboration

• Expertise is novel architectures
• Expertise in optimization algorithms
• Expertise in hardware/software optimization techniques

• E.g Compiler optimization techniques, kernel
parameter optimization techniques, etc.

Runtime
Parameter

NUNROLL = 4,
8, 16

float sum, input[64];
for(i=0;i<64;i+=NUNROLL)
{
 #pragma for
I,0,@I@<NUNROLL
 sum += input[i+@I@];
 #pragma endfor
}

Kernel
Generator

Code

float sum, input[64];
for(i=0;i<64;i+=4) {
 sum += input[i+0];
 sum += input[i+1];
 sum += input[i+2];
 sum += input[i+3];
}

NUNROLL = 4

Next
NUNROLL
VALUE

Flow diagram of Kernel Generator Code.

Results of auto-tuning methodologies compared to OpenCL SHOC
and architecture specific implementation.

Create Initial
Parameter
Set with a

smaller workload

Continue until desired
workload is reached

Create and run a
kernel per

parameter set
using JIT Compile

Rank Results and
remove poor
performing

parameter sets

Increase
workload size

slightly

Flow diagram of JIT Kernel Generator Code.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

	Slide Number 1

