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ARL Facilities and Capabilities Available to

Support Collaborative Research

We have two laboratory spaces at ARL and one at JQI:
- lab 1: scalable systems with laser-cooled neutral atoms
and single photons emitters
- lab 2 (Open Campus lab): chip-based ion trap for long-
lived quantum memory
- lab 3 (at Joint Quantum Institute, Univ MD): ion & Rydberg

S&T Campaign: Materials Research
Photonics

Research Objective

* We wish to establish an intra-city multi-site quantum
network with nodes that are quantum memories. .

* This is the first-of-its-kind network that links quantum
memories, quantum frequency converters and flying
quantum bits over fiber and free-space.
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 Leverage existing fiber link between ARL and nearby sites,
including Univ of MD.

Quantum networking & communication: best source of quantum
information is a quantum bit (qubit) in laser-cooled atoms and best
method to transmit quantum information is through single-photons
(flying qubits)

Quantum memories: generates, stores, processes and later retrieves
quantum information.
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Fig. 2 108 Rb87 atoms of ion trap
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Fig. 4 108 Rb87 atoms laser-cooled and
leveraging collective atomic effects, we
obtain a single emitted photon.

Challenges

e Remote entanglement of quantum memories calls for

single photon to be emitted by each memory we need to Complementa ry Expertlse/ FaCI|ItIES/

Quantum frequency conversion: photons (entangled
with quantum memories) must be frequency converted
into the telecom regime for long-haul transmission.
Imperfect operations: Ideal quantum memory requires
strong correlation to its emitted photon but no
correlation to environment.
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Capabilities Sought in Collaboration

High-efficiency guantum frequency conversion from 650
nm — 800 nm into the telecom range — new materials,
approaches for frequency conversion.

Development of theoretical protocols beyond the
quantum repeater (ie. limited only to single photons?).
Development of applications for distributed entangled
quantum systems.

Improved fidelities between two quantum memories.
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