ARL-HTMDEC Kickoff Meeting, July 2022

Development and deployment of a Bayesian framework for the accelerated machine learning of multiscale physics controlling material responses in extreme environments

Surya R. Kalidindi, Min Zhou (GT) Lori Graham-Brady (JHU) Raymundo Arróyave, Ankit Srivastava, Justin Wilkerson (TAMU/TEES)

Uncertain Materials Knowledge Systems

HOMOGENIZATION

P-S-P

Objective fusion of disparate data from heterogeneous sources (e.g., multiscale experiments, physics-MATERIALSKNOWLEDGESVSTEMSIMKSI based multiscale simulations)

P-S-P

DESIGN & MANUFACTURING

www.comsol.com

Bayesian Learning Framework for PSP Linkages

Bayesian Update of Governing Physics

$$p(\boldsymbol{\varphi}|\boldsymbol{E},\boldsymbol{\Sigma}_{\boldsymbol{E}}) \propto p(\boldsymbol{E}|\boldsymbol{\varphi},\boldsymbol{\Sigma}_{\boldsymbol{E}}) p(\boldsymbol{\varphi})$$

Notation

 \mathcal{P} Set of Process Variable

 μ Material Structure

P Properties

φ Governing Physics

 Σ Co-variance

E Experimental Observations

Likelihood computed using GP models extracted from simulations

Physics-Based Models

Build Gaussian Process models trained to simulation datasets produced by executing physics-based models by adaptive sampling of input domain for maximizing fidelity of extracted GP. Process-Structure: $p(\boldsymbol{\mu}|\boldsymbol{\mathcal{P}},\boldsymbol{\varphi},\boldsymbol{\Sigma}_{\boldsymbol{\mathcal{P}}},\boldsymbol{\Sigma}_{\boldsymbol{\varphi}})$ Structure-Property: $p(P|\boldsymbol{\mu}, \boldsymbol{\varphi}, \boldsymbol{\Sigma}_{\boldsymbol{\mu}}, \boldsymbol{\Sigma}_{\boldsymbol{\varphi}})$

in

<u>Sequential Design of Physical</u>

Experiments

Decide on the next experiment

that is likely to produce the

updating the governing physics.

largest information gain

Final Property Estimation = $\int P(\boldsymbol{\mu}(\boldsymbol{\mathcal{P}}, \boldsymbol{\varphi}), \boldsymbol{\varphi}) | p(\boldsymbol{\varphi}) | d\boldsymbol{\varphi}$

Task 1: Foundational Four-Step Bayesian Framework

Step 4

Task 2: Integration of Physics-based Constraints

Modify Step 1 and/or Step 2 of the Bayesian framework in Task 1 to constrain the models with physics-based priors

Length

[m] 100 10-3

10.6

10.9

10 15

Task 3: Analysis of uncertainty propagation through chained surrogate models

Length & Time Scales

- Develop tools for ranking and learning multiscale physics controlling material responses
- Evaluate and demonstrate workflows for efficiency and accuracy
- Focus on models in our related tasks
 - Dynamic energy dissipation & fracture resistance in multiphase polycrystalline ceramics
 - High-throughput and automated Ashby-style maps for ballistic performance
- Compare Bayesian surrogates to probabilistic prediction from simulations, at both micro- and macro-scale

Task 4: Dynamic Fracture Toughness and Energy Dissipation of Ceramics

σ_{axial} (GPa)

> 12 10

8 6

4

2

Microscale Fracture and Energy Dissipation Mechanism Tracking

Crack propagation

Explicit resolution of microstructure, transgrnular and intergranular fraction, internal friction, dissipation, temperature increase, and thermal effects

Energy dissipation under different loading conditions

Microstructure-Macroscale Fracture Toughness and Energy Dissipation Relations

Fracture toughness

Dynamic *J*-integral, driving force & resistance tracking

$$K_{IC} = \sqrt{\frac{\bar{E}}{1 - \bar{v}^2}} \xi(\mathbf{Q}, s, f) \left(\Phi_{in}H_{in} + \Phi_m H_m + \Phi_p H_p\right)$$

$$E = \int \left(\int_{S_{int}} \boldsymbol{f} \cdot \boldsymbol{v} dS \right) dt + \int \left(\int_{V} \boldsymbol{\sigma} : \boldsymbol{D}^{inel} dV \right) dt$$

Task 4: Dynamic Fracture Toughness and Energy Dissipation of Ceramics – Microstructure Design

Task 5: Ashby-style maps for ballistic performance

