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Objective fusion of disparate data 
from heterogeneous sources (e.g., 
multiscale experiments, physics-
based multiscale simulations)



Bayesian Learning Framework for PSP Linkages

Bayesian Update of Governing Physics

𝑝 𝝋 𝑬,𝜮𝑬 ∝ 𝑝 𝑬 𝝋, 𝜮𝑬 𝑝 𝝋

Notation
𝓟 Set of Process Variable
𝝁 Material Structure
𝑃 Properties
𝝋 Governing Physics
𝜮 Co-variance
𝑬 Experimental Observations

Physics-Based Models
Build Gaussian Process models trained
to simulation datasets produced by
executing physics-based models by
adaptive sampling of input domain for
maximizing fidelity of extracted GP.

Process-Structure: 𝑝 𝝁 𝓟,𝝋, 𝜮𝓟 , 𝜮𝝋

Structure-Property: 𝑝 𝑃 𝝁,𝝋, 𝜮𝝁 , 𝜮𝝋

Likelihood computed using GP 
models extracted from simulations

Sequential Design of Physical 
Experiments

Decide on the next experiment
that is likely to produce the
largest information gain in
updating the governing physics.

Final Property Estimation= 𝑃׬ 𝝁 𝓟,𝝋 ,𝝋 𝑝 𝝋 𝑑𝝋



Task 1: Foundational Four-Step Bayesian Framework

Step 1

Physics-Based Model

GPR/GPAR Models

Multiresolution experiments

Step 2

MCMC Sampling Model Parameter 
Distribution

Step 3

Step 4
Maximize information gain for next actions

Model Form UQ



Task 2: Integration of Physics-based Constraints

Physics-Aware 

Surrogates

Multi-Scale 

Modeling

High Strain Rate

Experiments
Bayesian 

Experimental Design

Mechanism

MapsModify Step 1 
and/or Step 2 of the 
Bayesian framework 
in Task 1 to constrain 
the models with 
physics-based priors
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• Develop tools for ranking and 
learning multiscale physics 
controlling material responses

• Evaluate and demonstrate 
workflows for efficiency and 
accuracy

• Focus on models in our related 
tasks  
• Dynamic energy dissipation & 

fracture resistance in 
multiphase polycrystalline 
ceramics

• High-throughput and 
automated Ashby-style maps 
for ballistic performance

• Compare Bayesian surrogates to 
probabilistic prediction from 
simulations, at both micro- and 
macro-scale

Task 3: Analysis of uncertainty propagation through 
chained surrogate models



σaxial

(GPa)

0.5 mm

Confined Unconfined

Microscale Fracture and Energy 

Dissipation Mechanism Tracking

Microstructure-Macroscale Fracture 

Toughness and Energy Dissipation Relations 


Explicit resolution of microstructure, transgrnular

and intergranular fraction, internal friction,

dissipation, temperature increase, and thermal effects

Fracture toughnessCrack propagation

Energy dissipation under different loading conditions

Dynamic J-integral, driving force &

resistance tracking
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Task 4: Dynamic Fracture Toughness and Energy 
Dissipation of Ceramics
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Representative Microstructures 

from Design Space
Multiple Instantiations of Each 

Microstructural Setting

Variation of Grain Size 

Distribution 

Physics-based simulations 

with SEMSS

Bimodal h = 0.82

Grain size (d) = 120, 360 mm (1:3)

300

500

700

600

400

T (K)
1 2

Experimentally-informed Design of statistically 

equivalent microstructure sample sets (SEMSS)

Property assessment
New Material Designs Data-driven ML
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Probabilistic Assessment

Material-Property

Relations Maps
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Task 4: Dynamic Fracture Toughness and Energy 
Dissipation of Ceramics – Microstructure Design



Our existing databases of mesoscale calculations Automated calibration of Johnson-Cook parameters

High-throughput ballistic simulations with J-C parameters

Automated Ashby-style Diagrams

Task 5: Ashby-style maps for ballistic performance


