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Program Description 

Purpose: Within the Army science and technology enterprise, DEVCOM-ARL is chartered to 
conduct disruptive foundational research, engage as the Army’s primary collaborative link to 
the scientific community, and interface to shape future fighting concepts. We crystalize these 
ideas and the impetus to perform these functions at the pace of innovation as ‘Operationalize 
Science for Transformational Overmatch’.  Simply put, we seek to accelerate discovery and 
transition breakthroughs to the Warfighter. 

 

Rule-based artificial intelligence (AI) and machine learning (ML) tools present powerful avenues 
for exploring an information landscape in discovering novel materials for applications in 
extreme conditions (e.g. high-strain rate, high-g loading, high temperature). Such approaches 
present considerable opportunity in exploring new frontiers for materials used in protection 
and lethality applications, especially when coupled with new approaches that allow larger and 
richer datasets, computational tools, and data infrastructure for collaboration. Broadly, AI/ML 
can be used to augment individual steps in the synthesis-processing-characterization pipeline, 
be used for scale-bridging to draw greater information from more tractable experimental 
approaches, and be used to guide a broader research loop.  

 

Advances in synthesis, modeling, and characterization will greatly advance our ability to exploit 
monolithic materials in extreme conditions.  However, there is a need to contemplate how the 
capabilities of additive manufacturing and other processing techniques can be used to evaluate 
materials that exhibit spatial variations in composition, anisotropic characteristics, and contain 
interfaces between multiple materials.  The parameter space expands exponentially as these 
variables compound the system inputs, but truly advanced materials performance will likely be 
dependent on an integrated systems-level approach to materials design.   

 

ML toolsets coupled with advanced manufacturing and characterization is necessary to achieve 
accelerated discovery of new materials for application in extreme dynamic (impact, thermal, 
ablative) conditions.   ML toolsets and software exist but may need to be adapted for the 

https://www.arl.army.mil/XXXXX


specific requirements of materials discovery and design.  Full exploitation of the ML approach 
will certainly require extension and further development to focus on proof-of-concept for 
material classes of interest in Army applications.  This could be achieved within a generalized 
and scalable framework that supports rapid, robust and trusted data exchange.  New tools that 
consolidate/organize data and increase throughput throughout the workflow will require a 
specialized approach to be applied to ephemeral phenomena e.g. shocks, heating, localized 
deformation, and failure.   ML models that incorporate these phenomena will critically rely on 
physics-based models that adequately capture the underlying driving mechanisms.  Critical 
(targeted by ML approaches) physics models may require further development; ML offers 
opportunity to consolidate much of these physics into fast-running analytic frameworks 
compatible with the high-throughput approach and may be used to guide autonomous systems 
for high-throughput characterization of transient phenomena. 

 

To accelerate improvements in Army armor and weapon system performance, DEVCOM-ARL 
wants to leverage high-throughput methods in synthesis, processing, characterization, and 
modeling for materials used in these applications. Machine-learning techniques are in the 
nascent stage of integration with materials science but may present a path towards accelerated 
discovery, as these tools may uncover novel links between system performance and material 
science that have been previously underdeveloped or overlooked. DEVCOM-ARL seeks 
collaboration with external investigators to leverage (and train experts on) machine-learning 
techniques in the discovery of materials that perform in extreme environments, but machine-
learning techniques require large volumes of quantifiable data in order to best reveal links 
between the materials science and system performance. High throughput characterization and 
manufacturing techniques may present a viable approach to satisfy the data volume 
requirements to bring machine-learning to bear.  

 

In summary, the US Army Modernization Priorities require materials that survive and perform 
in extreme environments; harsh military environments of high-acceleration (e.g. projectile 
launch and flight), high-temperature and rapid ablation (e.g. hypersonic flight), and impacts at 
very high velocity (terminal ballistics). The totality of these environments and accumulating 
requirements on future materials drives the imperative to consider an increasingly large 
number of constituent elements, structure and properties. Discovery must now parse through 
billions of candidate materials to achieve highly specialized and transformational functions.  
This drives a data-driven approach; one that fuses high-throughput materials synthesis and 
characterization with machine learning algorithms and close-loop discovery automation. 

 

The overarching goal of this program is to couple automation and machine learning techniques 
to material manufacturing and characterization to withstand and perform under extreme 



conditions. The program will develop the necessary methodologies, models, algorithms, 
synthesis & processing techniques, and requisite characterization and testing to rapidly 
accelerate the discovery of novel materials through data-driven approaches. As such, it is 
expected the results of this program will be the above techniques as well as novel materials 
exhibiting unprecedented properties at the appropriate scales that have been developed 
utilizing all of the aforementioned tools which will be provided to DEVCOM-ARL for further 
analysis and testing.     

 

Proposals may draw from any number of these thrusts but must focus on research that employs 
high-throughput data-driven techniques to close material design loops connecting material 
selection, synthesis, and processing to system performance. 

 

In order to achieve this paradigm shift in materials discovery, significant advances are needed in 
the following general thrust areas: 

 

• Data-driven Material Design - meant to be a comprehensive term for all aspects 
of the material design phase of the material development cycle which are 
accelerated through the integration of data-driven methods. 

• High-Throughput Synthesis & Processing – to include both modifying existing 
synthesis & processing methods to accommodate for high-throughput, as well as 
developing novel techniques. 

• High-Throughput Characterization – to include implementation of automation 
for conventional techniques, and the development of surrogate tests to mimic 
techniques which are not amenable to automation, especially for experiments in 
extreme conditions (e.g. high strain rate, high temperature). 

• ML-augmented Physics-Based Models – the use of ML tools to identify the most 
crucial parameters and parametrization experiments for physics-based models is 
poised to be a tipping point in materials science. To date, nearly all ML 
algorithms have been developed for big data (e.g. image recognition).  It is 
critical that we discontinue ‘repurposing’ these types of algorithms and begin 
developing ML algorithms specifically designed for materials discovery, and 
informed by physics.  

  

The general thrust areas will be complemented by the following targeted thrust areas: 



• Program and Workflow Development – optimizing workflow to achieve the best 
outcomes for the general thrust areas through improved teaming and program 
planning. 

• Data Handling and Management – development and upkeep of a data platform 
used by all funding recipients and government collaborators. 

 

HTMDEC has been developed in coordination with other related ARL-funded collaborative 
efforts (see descriptions of ARL collaborative alliances at 
https://www.arl.army.mil/www/default.cfm?page=93) and shares a common vision of highly 
collaborative academia-industry-government partnerships.  However, HTMDEC will be executed 
with a program model different than previous ARL Collaborative Research/Technology 
Alliances. Specific components of the program are highlighted below: 

 

• HTMDEC will be a two-step application process, consisting of a White paper 
stage and a Proposal stage. 

• HTMDEC will be executed through an initial funding period (“Seedling” only), 
followed by subsequent funding periods involving both Seedling and “Center” 
awards. A Center will be an option period exercised from a seedling award. The 
only exception to this will be for the Targeted Thrust Area- Data Handling & 
Management. The Seedling selected for continuation for this particular thrust 
area will do so as a recurring Seedling for the duration of the HTMDEC program, 
and will support all of the Centers as the approved data platform for HTMDEC.  

• A FOA Opportunity workshop will be held to brief interested Applicants on the 
long term program goals of this FOA. In FY2022, only Seedling efforts will be 
awarded. The focus of these Seedlings will be to address either one or more of 
the general or targeted thrust areas.   

• White papers will address one or more of the thrust areas; thrust areas may 
change on an annual basis in order to reflect current interests.  White papers will 
be evaluated.  Applicants with only the most highly rated white papers will 
receive an invitation from the Government to submit a Proposal. 

• Seedling Proposals will address one or more of the thrust areas.  Proposals will 
be evaluated and funding will be provided to those Recipients selected for award 
of a cooperative agreement (CA) described as the Seedling award. 

• Prior to the close of the Seedling award, the Recipients of a Seedling CA are then 
eligible to submit a proposal for consideration of an option period under the 
Seedling CA of up to 4 years.  This option period will be a Center.  Since the 
option proposal will need to address all four general thrust areas, Seedling 
Recipients will be encouraged to collaborate and combine during the option 
period of performance to propose the strongest possible Center option for 



selection.  Option proposals will be evaluated and funding will be provided to 
those Recipients selected for the exercise of their option.    

• In addition to the Center option proposal addressing all four general thrust 
areas, Recipients will also have the opportunity to provide for a Graduate 
Student Fellowship effort for US citizens working in one of the thrust areas for 
both Center and Seedling proposals?. 

• Project review workshops will be held annually, with the intention of allowing all 
CA Recipients to present the results of their research, as well as interacting with 
the other Recipients.    

 

White papers and Proposals that are in compliance with the requirements of the FOA will be 
evaluated in accordance with merit-based, competitive procedures. These procedures will 
include evaluation factors and an adjectival and color rating system. A review team, consisting 
of a qualified group of scientists and managers will evaluate the compliant proposals and 
provide the results of that evaluation to the decision-maker for the Government. 

 

Technical Thrusts 

FY2022 Proposals will address a single (targeted or general) thrust as a seedling. In following 
years, seedlings may address any active thrust area, while centers must address at least the 
four general thrusts to converge high-throughput and data-driven techniques to demonstrate 
material selection, synthesis, processing, and performance in a design-cycle manner. FY2022 
seedlings for targeted thrusts will have the opportunity to develop a robust framework for the 
program in these areas: 1. Program & Workflow Development and 2. Data Handling & 
Management. General thrust areas that focus on research employing high-throughput data-
driven techniques to close material design loops connecting material selection, synthesis, and 
processing to system performance are: 1) Data-driven Material Design, 2) High-Throughput 
Synthesis & Processing, 3) High-Throughput Characterization, and, 4) ML-augmented Physics-
Based Models.   

Targeted Thrust Areas: 

1.  Program & Workflow Development 

In FY2022 only, funding will be made available to allow for development of a comprehensive 
program plan, project workflow, and facilitate teaming among awardees and with government 
in anticipation of continuing on to a Center in FY2023. As a funded ‘seedling’, applicants are 
encouraged to exercise proof-of-principle features of a rudimentary design cycle in order to 
expose shortcomings of existing methods and suggest research to close existing gaps.  Project 
workflow should include determination of all of the required resources, including but not 
limited to: processes, facilities, personnel, etc.. As Centers are expected to address all four of 



the primary thrust areas, proposals for this particular targeted thrust area should likewise 
address all four thrust areas.  

2.  Data Handling & Management 

In FY2022 only, proposals may directly address data handling and management within the 
program. A common data handling and management schema must be established from the 
onset of the program that will be utilized by program participants throughout the life of the 
program. This schema should consider all aspects of data handling and management, including, 
but not limited to, data acquisition, data transfer and sharing protocols, tagging, data analysis, 
version control and safe/redundant/scalable data  storage. The FAIR guiding principles for 
scientific data management and stewardship defined in 2016 in Scientific Data shall be followed 
in order to improve the Findability, Accessibility, Interoperability, and Reuse of digital assets. 
Proposals must specifically address data sharing between program awardees and government 
collaborators that have strictly regulated information systems (e.g. the DOD high performance 
computing system).  Proposals for this particular task will only be accepted in FY2022, with the 
intent to down select the most promising proposals (selected on the basis of scientific merit 
and collaboration within the effort) for award throughout the duration of the program as the 
approved data handling and management platform for all of the award recipients moving 
forward.  

 

General Thrust Areas: 

1.  Data-driven Material Design 

 

For the purposes of this FOA, data-driven material design is meant to be a comprehensive term 
for all aspects of the material design phase of the material development cycle which are 
accelerated through the integration of data-driven methods. This includes, but is not limited to: 
data mining through literature sources and existing databases (from data sources such as 
density functional theory, thermodynamics databases such as Calphad, literature sources, etc.), 
use of adaptive learning or experimental optimization to predict or guide future experiments, 
and use of machine learning and artificial intelligence to parameterize the material property 
space for extreme conditions.  Approaches that accelerate material design in multi-objective 
systems are of particular interest. A trained model is not a sufficient deliverable; a deliverable 
must include a toolset that can be used to design or discover new materials that offer an 
improvement in performance in Army application environments. Sub-areas within this thrust 
could include: data mining, adaptive learning approaches and ML/AI driven design, and 
uncertainty quantification: 

 



i. Data mining includes the use of machine learning algorithms for mining of material 
properties from various databases, repositories, and the open literature.  This includes 
using conventional data science approaches on the larger data sets that currently exist, 
as well as using approaches such as natural language processing (NLP) to consolidate 
information that currently exists in an unorganized fashion in literature. While this type 
of data is sparse as compared to typical ‘big data’ sets, there is an opportunity to rapidly 
explore the compositional space of candidate materials as a first-order screening tool. 
This information can also be utilized to construct quantitative structure-property 
relationship (QSPR) models for predicting the properties of novel materials.  

 

ii. Adaptive learning is an AI approach to guide experimental steps for optimal value.  
Using various approaches, an active learning scheme can be used to target specific 
experimental parameters (e.g. composition and processing conditions) based on user-
defined rules, such targeting areas with maximum uncertainty in learned QSPR or 
targeting extrema in predicted materials performance.  Such approaches can be critical 
in materials design and discovery of new candidate materials with strong application-
specific performance.  Integration of active learning schemes with experimental 
hardware offers the opportunity to automate or autonomize experimental steps and 
vastly accelerate the materials design process.   

 

iii. ML/AI driven design involves use of ML/AI approaches to accelerate steps in the 
materials design and discovery process.  This can include improvement of individual 
steps in the research pipeline (e.g. use of image recognition approaches in microscopy), 
connecting approaches together for improved connectivity (e.g. use of ML approaches 
to address scale bridging between computational models and tools), and use of these 
tools to learn a broader region of materials space and identify key regions of high 
performance.  In all cases, emphasis of using these tools to design new materials at an 
accelerated rate is critical.    

 

iv. Uncertainty quantification will play a prominent role in synthesis, characterization, and 
modeling for the materials design process. Understanding the scope of uncertainty 
during synthesis ensures that prototype materials contain desired structure. Analyzing 
uncertainty propagation in characterization experiments, based on uncertainties during 
synthesis and within the experiment itself, enables quantifiable estimates of confidence 
in collected data and enables informed design-of-experiments. Finally, modeling efforts 
stand to benefit from careful uncertainty quantification for model inputs to better 
identify the role of the most crucial parameters in the materials design space. 



 

 

2.  High-Throughput Synthesis & Processing 

 

Emerging methodologies such as ICME and ‘Materials by Design’ have allowed scientists to 
rethink the early stages of a material’s development life cycle by integrating computational 
models and simulation into the material design phase. This allows researchers to very rapidly 
hone in on the most promising composition space, but is just the beginning of the material 
development cycle. In order to ensure high-throughput materials discovery, it is imperative that 
the accelerated pace continues through the synthesis, processing, and characterization phases. 
This poses significant challenges, as most existing R&D infrastructure is not designed for high-
throughput and/or automated processes. 

 

i. High-throughput synthesis includes both modifying existing synthesis methods to 
accommodate for high-throughput, as well as developing novel techniques. Any 
technique developed should consider sample homogeneity and compositional control, 
as fluctuations could greatly impact uncertainty downstream. Characterization and 
testing of these samples will occur over many length scales, so it is imperative that the 
technologies proposed are amenable to the synthesis of bulk materials, and not solely 
applicable to thin films.  Of particular interest is the integration of in situ diagnostics into 
the synthesis technique such that real time quality assurance (QA) could be achieved. 
Challenges to synthesis include a lack of available technologies demonstrated in a high 
throughput environment, e.g. combinatorial chemistry for metals and ceramics. 
Challenges also include a disparity across material classes, with polymers and metals 
being more amenable to high-throughput than ceramics and composites.     

 

ii. High-throughput processing involves all of the post-synthesis processing required before 
a material is ready for characterization, testing, or use in a relative environment. This 
includes, but is not limited to consolidation, heat-treatments, cold and hot working, 
machining, etc.. Processing maps are often ill-explored and process models tend to be 
basic in nature. However, processing dictates microstructure evolution and will be 
paramount to assuring consistency in material properties. Challenges in processing 
include the fact that there is no straightforward or unified way to represent/encode a 
material’s processing history.  In addition, processing techniques vary widely, and are 
sometimes proprietary and not based on industrial standards. Challenges also include 
the fact that many processing steps (e.g. sintering) are not easily adapted to high-
throughput processes and could pose a rate-limiting bottleneck in the process. 



 

iii. In situ diagnostic approaches and analysis will play a critical role in any high-throughput 
process, including both synthesis and processing. Techniques are required that can 
monitor the quality of a material in real time such that uncertainty can be minimized. 
Items to be considered include, but are not limited to: homogeneity, presence of 
defects, texturing, crystallographic phase, etc. 

 

 

3.  High-Throughput Characterization 

 

Characterization of materials suffers from being inherently slow. Equipment has been designed 
for conventional sample-by-sample handling, and very little has been done in the way of high-
throughput and/or automation, especially in characterization experiments for extreme 
conditions or with higher fidelity technologies. Conducting high strain-rate or other extreme 
mechanical property testing with a high-throughput approach will always hold further 
challenges than in quasi-static testing. Methodologies to improve the throughput and/or 
automation of high-strain rate and high-temperature tests, which accurately mimic the extreme 
environments of the application space, are of significant interest. Modifications to techniques 
such as laser induced particle impact testing (LIPIT) and laser driven flyer plate experiments are 
examples of areas ripe for further exploration. High-fidelity characterization techniques (e.g. 
nano-indentation, scanning electron microscopy, etc.) have seen some limited levels of 
automation, but the majority of high-fidelity characterization techniques stand to benefit from 
further adaptations to achieve higher experimental throughput. 

 

i. High-strain rate surrogate tests are required to enable testing in a relevant 
environment, but in a high-throughput or automated mode. The application space for 
the HTMDEC program places materials in extreme conditions such as at temperatures in 
excess of 1000s of degrees Celsius or at strain rates exceeding 104 per second with 
pressures in the tens of Gigapascals and rise-times in the nanoseconds. Achieving these 
conditions is nontrivial in conventional experiments, but these experiments tend to 
provide the most meaningful screening method for down-selection of the most 
promising candidate materials and systems. Surrogate experiments may need to focus 
on a single material property or mechanism that is the primary driver of the material or 
system response to extreme conditions in order to improve experimental throughput. 
These accelerated and/or automated surrogate experiments may also need to trade 
experimental fidelity for throughput, but the resulting larger datasets might guide 
further testing with slower, conventional higher fidelity traditional testing for extreme 



conditions (e.g. Kolsky bar, ballistic testing). Challenges include examining the trade-off 
space between experimental throughput and fidelity, as well as automating tests of 
considerable complexity. Ideally the surrogate experimental approach should 
interrogate system level performance in as realistic of conditions as possible (i.e. 
experiments should reveal the role of multiple materials, their interfaces, and their 
geometries at the system level). 

 

ii. Automated characterization techniques are needed to rapidly accelerate what is often 
one of the slowest phases of material development. In addition to automating the 
actual techniques, data acquisition and analysis should also be automated and 
seamlessly fed into the appropriate ML data sets, it’s anticipated that the greatest 
advances can be realized in lower fidelity, quasi-static techniques than in higher-fidelity, 
high-strain rate testing, especially in the near term. Challenges include the lack of 
automation in conventional characterization techniques, which were designed for 
sample by sample analysis. Challenges also include the fact that with high-throughput 
there will be increased uncertainty due to trade-offs between speed and accuracy.   

 

iii. Novel diagnostic approaches and analysis are required to maximize measurement 
resolution from single high throughput characterization experiments to increase data 
fidelity and reduce error. Automated instrumentation methods (e.g. machine vision) 
may present an avenue to obtain more granular, full-field data from a single experiment 
than conventionally possible, both increasing the throughput of data and reducing 
experimental burden for individual characterization experiments. Coupling greater 
diagnostic depth to high-throughput experiments could then provide an even greater 
amount of experimental data than just the high-throughput experiment itself.  ML 
trained analysis of characterization experiments may reduce experimental uncertainty 
requiring fewer experiments to make connections between processing and system 
performance. 

 

4.  ML-augmented Physics-Based Models  

 

The ultimate goal of this research program is to link material processing and properties to 
system level performance. Numerical models offer an opportunity to design at the system level 
in silico but are completely reliant upon correctly identifying these links and developing models 
that faithfully and completely capture these links. Structural analysis of heterogeneous 
materials and systems using phenomenological constitutive models is often inaccurate without 
a connection to the material microstructure and underlying physics. Physics-based models that 



can accurately simulate the material response in the application environment are one way to 
attain this goal, but understanding the role of model inputs remains a challenge, and 
developing these materials models in realistic materials systems with fidelity to all behaviors 
across many length scales simultaneously remains in many cases difficult or intractable. 
However, for many systems ML-augmented physics-based models represent a nascent 
catalogue of techniques that seek to improve upon the conventional models used with respect 
to speed or fidelity, and overcome the limitations found with a lack of data necessary to use 
more conventional data-driven learning.  Approaches range from use of ML to optimize model 
parameters to learning the mathematical and physical models themselves or use of physics to 
constrain and guide an ML model.  These approaches offer the opportunity to enhance 
computational approaches used to design and discover materials in a number of ways.  Below 
are listed some examples of how a successful program might incorporate this thrust area: 

 

i. Implementation of ML-augmented physics-based models to study critical physics 
mechanisms.  In particular, with respect to ballistics applications, it is difficult to study 
transient and highly-localized phenomena that occur in high-rate and ballistic events 
(e.g. shocks, heating, deformation, and failure), especially for complex system-level 
geometries and interfaces.  It is further difficult to incorporate these models into a 
wider workflow of research.  Critical physics model development, coupled with ML 
approaches that can accelerate the runtime of these traditionally-slow models and allow 
their incorporation into a high-throughput and potentially autonomous workflow, are 
likely important to a successful program.  Many of these behaviors are still modeled 
with approaches that cannot collect the full generalized behavior of these transient 
events with the required predictive accuracy for materials design requirements.  In 
addition to developing models that offer improved speed in a workflow, developing 
models that can fill in critical gaps in behavioral understanding and quantitative 
prediction of these transient events is also a challenge that remains outstanding.   

 

ii. Scale-bridging considerations remain a challenging area in computational materials.  The 
approaches used in Physics-driven ML models may offer solutions to bridge the scales 
from molecular interaction models developed in smaller scales up to the performance of 
a system in its application scale and environment.  There are a great number of 
implementations possible that would benefit from accelerated queries for data from 
databases to accelerated physics models that can be called at runtime, among others.  
Developing an approach to streamline and accelerate multiscale materials research is 
likely critical to a broader program workflow.   

 



iii. Training of ML models as well as the ability to condense data into functions that can be 
queried quickly offers substantial opportunity in collaboration and handoff of 
information.  By providing a solution that can relatively quickly provide a predicted 
system structure, property, or behavior, a broader automated or collaborative research 
loop for materials design and discovery can be improved.  Development and handoff of 
such links in the chain are likely to be an important part of a successful program. 
Further, development of data sharing and data hand-off frameworks is necessary to a 
successful collaboration.   

 

iv. Development of processing models of materials remains an area of especial challenge in 
the development of a materials design and discovery approach.  Though no less 
essential to development of new best-in-class materials than composition space, the 
wide range in category of degrees of freedom in sequential processing steps compared 
to composition creates a very grand challenge in representing and executing materials 
design and discovery through all but the simplest of processing chains.  The 
development of a data science-ready physics-based processing model that can be 
executed to explore processing space in design of ballistic materials would be a major 
triumph.  Challenges include representing or encoding an open-ended processing 
history, as well as predicting the composition-dependent changes such a processing 
chain would engender.   

 

v. Development of an overarching methodology will be required as multiple data sources 
are used (models/characterization/ML) to predict individual features, properties, or 
behaviors, the consolidation of these elements into a broader model that evaluates 
expected macroscopic properties becomes nontrivial.  The use of some combination of 
ML and physics-based information will likely be critical in developing a final step that 
brings these elements together to predict a general system performance and/or learns 
the landscape of system performance as a function of these elements.  The eventual 
goal of a successful program includes design of materials with multi-objective 
requirements.  Data will likely come from many sources, including data repositories, 
physics-based computational models, high-throughput our automated experiments, and 
ML models.  The development of one over-arching umbrella that consolidates program 
information into a system performance model of materials will enable much greater 
success in discovering or designing materials with user-specified objectives. 


