PURDUE
UNIVERSITY:DEVCOM ARL
HTMDECNorthwestern

MACHINE LEARNING ENHANCED MODELS FOR MATERIALS @ EXTREME CONDITIONS: HYPERSONICS & PROTECTION

Ale Strachan,* Ilias Bilionis, Marisol Koslowski, Michael Titus, Greg Wagner *Purdue University & Northwestern University* * strachan@purdue.edu

Exotic phenomena at extreme conditions

response

- Constitutive& evolution laws
- Embedded physics

Mike Titus

Hypersonics & **ML-Enhanced** Protection Models Composition Design Erosion (Y1) Done? Ν **Processing conditions** Energy dissipation (Y2+) Feedback Design Process and fabrication Model (Y2+) Hypervelocity (Y1) & terminal modeling ballistic (Y2+) impact Ab initio & MD Ab initio & MD Ale Strachan Phase fields Phases & FEM 1 Microstructure Cellular automata ML-augmented coarse-graining & model development New models : • Dimensionality reduction processing & dynamical • Constitutive& evolution laws response • Embedded physics Marisol Koslowski

Ilias Bilionis

4

Thrust 1: process and fabrication modeling

Y1 deliverables: processing models for BCC alloys

Thrust 2: Hypervelocity & ballistic impact

- Shocks & EOS
- Plasticity (rate & pressure effects)
- Phase transformations (solidsolid & melting
- Fragmentation & jetting
- Chemistry

Need for improved models

ELSEVIER		ja	Conte ournal hom	ents lists ava Acta N epage: www	ilable at Scien Ateriali v.elsevier.com	a n/locate/ac	tamat				erialia anti	Existing plasticity models cannot
Site-specif high-veloc	fic study o city metall	f jettin ic mici	ng, bon ropartie	ding, a cle imp	nd local act	defor	matio	n duri	ing	Check for updates	4	capture the plastic region
Ahmed A. Tia ^a Department of Mater ^b Institute for Soldier N ^c Department of Chem	amiyu ^a , Yuch rials Science and Engi Nanotechnologies, MIT nistry, MIT, Cambridge,	een Sun ^{a,} neering, MIT, Ci Cambridge, M MA, 02139, US	i ^{b,c} , Keith iambridge, MA, 1A, 02139, USA SA	1 A. Nelsc , 02139, USA	on ^{b,c} , Chris	topher <i>i</i>	A. Schuł	1 ^{a,1,*}				(x, 0.2) Place
(a)	+200 ns +200 ns	+200 ns	+200 ns +	200 ns +20	10 ns +200 ns	+200 ns	+200 ns	+200 ns	+200 ns	+200 ns	+200 ns	0.15 0.1
7 m/s												setting 8
 40 µm		•		1		•	•	•	•	•	•	Divergence from power-law scaling 100 200 300 400 500 600 Impact velocity (v _i)

Y1 deliverables: high-strain rate models for metals

- Characterize fluctuations
- Strain rates 10⁸-10⁷ 1/s
- Initial dislocation structure
- Single-element alloys and BCC HEAs

Wilkinson, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9.

Collaborations with DEVCOM ARL & HTMDEC seedlings

- Advanced manufacturing of metallic alloys & cermets
 - Processing microstructure relationships
- Hyper-velocity impact and erosion experiments
- Data science and materials informatics
 - FAIR data & workflows
- Multiscale modeling of materials at extreme conditions
 - Rate and high-pressure effects on plasticity & fracture
 - Chemistry