

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Advanced Decision Architectures Collaborative Technology Alliance (ADA CTA)

Advanced Decision Architectures Collaborative Technology Alliance

Vision

Better & Faster Decisions Based on Displayed Information

Research Areas

- Cognitive Modeling and Metrics
- Team Communication and Collaboration
- Context-Sensitive Information Presentation
- Fusion and Intelligent Architectures

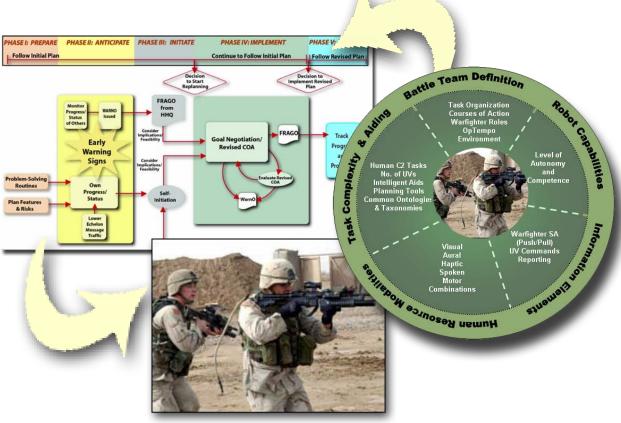
RDECOM

Success Requires Partnerships

- 482 publications
- 5 published books and 43 book chapters
- 28 workshops, seminars and short courses
- Millions in technology transition funding

External Collaborations:

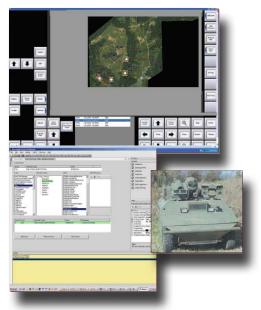
- JFCOM J9
- Fort Leavenworth BCBL
- Robotics CTA
- Sensors CTA
- Communications and Networks CTA
- AFRL
- CERDEC
- USMA
- DARPA
- National Science Foundation
- Institute for Creative Technologies
- Flexible Display Center


Cognitive Modeling and Metrics

Approach:

RDECON

- Model cognitive processes as a foundation for work on collaborative technologies and decision support systems
- Define unobtrusive methods to quantitatively assess users' states and better support decision making
- Define and showcase user-centered design



The goal is to understand the cognition underlying Soldier activities and lay the foundation to develop decision-centered technology

Cognitive Modeling and Metrics

▲ Graph-based Interface Language GUI Evaluation System that combines cognitive and task models

Planned Transitions

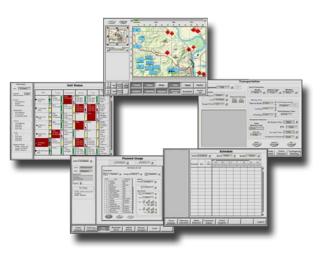
- Developed an efficient computational model of decision making.
- Created models to describe interactions between fusion processes and decision making.
- Conducted an experiment to determine how decision making intelligent agents can best assist S2 and S3 in the 3-Block Challenge scenario.
- Integrate spatial reasoning capabilities into the Graph-Based Interface Language GUI evaluation system.
- Computational models to predict situation awareness during complex scenarios.

FY08-09

- Autonomous Vehicle Operator Span of Control Evaluation Tool linked to cognitive models to assist Robotics CTA.
- Human Performance Measurement Framework for use in DARE.
- Models to predict how humans learn Recognition-Primed Decision Making for Network Enabled Command and Control.

RDECOM Team Communication and Collaboration

Approach:


- Perform work to understand how individuals and teams make decisions, assess situations, and interact with technology
- Prototype and validate collaborative software-based tools with actual Army decision makers
- Provide tools and techniques to enable Soldiers to operate in multi-cultural environments

The goal is to improve commander and team decision making and operations across the full spectrum of military operations

RDECOM Team Communication and Collaboration

▲ Interface concepts driven from Goal-Directed Task Analysis approach

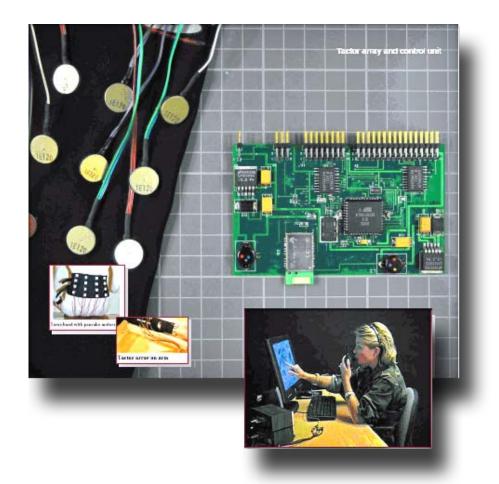
- Improved distributed planning activities via Collaborative Slide Annotation Tool during CERDEC JF Experiment.
- Developed C2 network analysis toolkit to help commanders visualize C2 structures, analyze effectiveness and redesign the structure, if necessary.
- Methods to facilitate decision making across distributed teams.
- Mission planning and replanning tools.
- Capabilities to enable Soldiers to communicate effectively in multi-cultural environments.
- Measures to describe and predict team performance and subsequent impact on overall system performance.

FY08-09

Planned Transitions

- Display concepts to improve situation understanding.
- Goal-directed task analyses to LW-SI and FCS.
- Organizational Risk Analyzer that enables commanders to visualize relationships between humans, resources, knowledge, tasks & missions.

Context-Sensitive Information Presentation



Approach:

- Design, prototype, test and validate state-of-the-art displays to include different modalities of information presentation and interaction
 - Visual

RDEGO

- Tactile
- Thermal
- Natural Language (speech and text)
- Develop algorithms to support Army planning systems

The goal is to put the Soldier in control of the decision support environment

Context-Sensitive Information Presentation

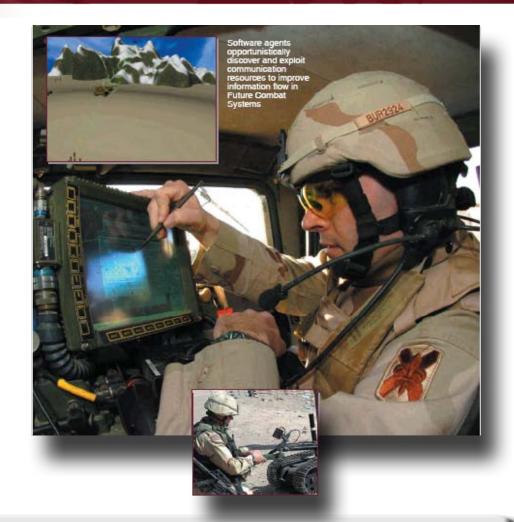
▲ Prototyped interfaces to promote efficient and effective human-agent interaction

Planned Transitions

- Created haptic devices and guidelines for their use that can be used to silently communicate with Soldiers in the field.
- Developed and demonstrated integrated research environment that supports experimentation of integrated ADA components.
- Prototyped adaptive delegation interface to accomplish human supervision of multiple autonomous agents.

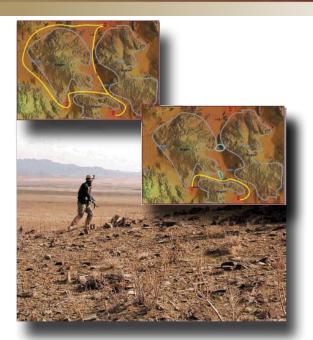
- Multimodal technologies (tactile, visual, speech) and physiological sensors systems to maintain contact with Soldiers in the field.
- Report on how flexible displays can optimally provide dismounted Soldier information requirements.

FY08-09


- DARE for concept exploration and experimentation.
- Tactile devices with tactor arrays to provide context-rich messages to dismounted Soldiers.
- User interfaces for human-robot interaction to provide situation awareness in complex environments.

RDECOM Fusion and Intelligent Architectures

Approach:


- Develop methods to efficiently fuse large amounts of information using automated algorithms
- Develop automated tools to support planning and real-time situation understanding
- Develop key principles and control algorithms for applying autoadaptation

The goal is to create decision tools that support fluent coordination and synchronization across human-automation teams

Fusion and Intelligent Architectures

RDECON

Algorithms to assist Soldiers in spatial reasoning in complex terrain

- Demonstrated agile software agents on FCS platforms.
- Demonstrated computer reasoning algorithms that address entity re-identification relevant to intelligence analysis systems.
- Conducted experiments to improve appropriate perception of risk in decisions that involve uncertain information (including asset health, status and location).

FY06-07

- Demonstration of fusion engine in a tactical overwatch scenario.
- Prototype interface to develop and assess sensor allocation plans.

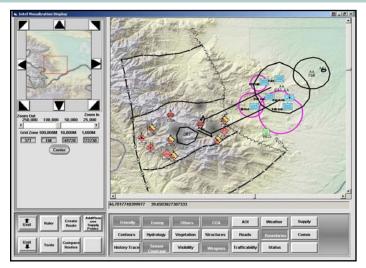
FY08-09

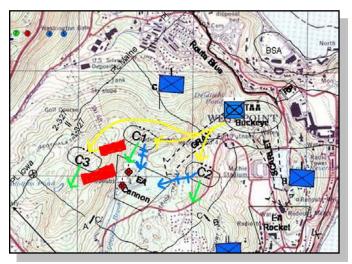
Planned Transitions

- Agile agent infrastructure integrated with policy management and domain services to enable efficient use of network resources.
- Spatial reasoning components for integration into ACT-R open source cognitive modeling architecture.

Advanced Decision Architectures FY08 Program Direction

RDECOM


Research Area	Focus	Transitions
Cognitive Modeling and Metrics	 Measures Cognitive Processes Computational Models 	 Compendium of human performance metrics to CERDEC Methods to integrate decision making simulations to CERDEC I2WD Cognitive agents & models to Robotics Collaboration ATO
Team Communication and Collaboration	 Culture in Teamwork Tools for Team Decise Making 	 Social Network Analysis to Army G-2 Dynamic Planning Tools to FCS Multi-cultural Collaboration Tools to JFCOM
Context-Sensitive Information Presentation	 Multi-Modal Displays Coordination of Multiple Perspectives 	 Visualization Technologies to Robotics Collaboration ATO Enhanced Tactile Displays to FCS Improved distributed planning activities via CSLANT to CERDEC
Fusion and Intelligent Architectures	 Intelligent Architectures for Fusion and Planning Agile Computing Infrastructure 	 Spatial Reasoning Systems to FCS SOS Modeling Architecture to Robotics Collaboration ATO and FCS Intelligent Agents to FCS


Significant Transitions

The Fusion Engine has an impressive technical transition record with the agencies of DARPA, AFOSR, and CERDEC- I2WD

Displays to enable decision making on the move to FCS

Displays to improve SA and understanding of intent when communicating operations to CERDEC

In process:

RPD-Enabled Agents to enhance human-agent team performance to CERDEC