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Atmospheric Sensing Opportunities

Research Objective
• Develop a technology that traps and measures Raman 

spectra of aerosol particles from continuously sampled 
stream 

• Use the technology for the detection and characterization 
chem/bio agents and atmospheric aerosol particles

Challenges
• Raman spectra are extremely weak.   
• Drag forces from air tend to make particles move. 
• Trapping particles in air is very difficult, especially from 

continuous sampling.
• Complex atmospheric aerosols background can 

confound the detection of chem/bio threat agents.

ARL Facilities and Capabilities Available 
to Support Collaborative Research

• 4 labs over 1200 square feet of research space. 
• Continuous-wave and pulsed laser sources from deep UV 

to visible and near IR.
• Spectrographs; image and spectral detectors; microscopes; 

aerosol trapping devices; and aerosol generators.
• Dual-wavelength single particle fluorescence spectrometer.
• Detection of single particle elastic scattering patterns.
• Single particle Raman spectroscope for trapped aerosol 

particles in air.

Real-time & in-situ detection and characterization of single aerosol 
particles exploiting scattering, fluorescence, & Raman spectral signatures

• Interrogate one 
particle at a time.

• Elastic scattering 
for   size  & 
morphology.

• Fluorescence 
spectra for rough 
classification.

• Raman spectra for 
more specific 
characterization.
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(a) Shaped laser beam is able to trap both transparent and absorbing 
particles in air using low N.A. optics; (b) Single Johnson grass smut spore 
is trapped in air; (c) SEM images from B. Subtilis, Ragweed, Johnson grass 
smut spores, and Carbon nanotubes; (d) Raman spectra from pollens. 

Complementary Expertise/ Facilities/ 
Capabilities Sought in Collaboration

Seek wide collaborations with universities, research 
institutes, and governmental agencies; Explore deep 
understanding of atmospheric aerosol, in particular chem-
& bio-aerosol particles.

(b)

(a) (b)

(c)

(a) Double-wavelength single particle fluorescence spectrometer in bio-aerosol 
fate study; (b) Single particle Raman Spectroscope from trapped airborne 
aerosol particles; (c) Pulsed, tunable Ti:Sapphire laser system 220 nm-450 nm.

(c)

(a, b) ARL, JHU/APL, ECBC developed system for
measuring spectrally-resolved fluorescence 
cross Sections of aerosolized biological live 
agents (ECBC BSL3 lab); (c) A system to study 
bio-aerosol fate effects developed by ARL, TX 
A&M, JHU/APL, and SNL.

Time-series with range 
from the 13 July 2014 
Antares rocket launch.

Parabolic equation and 
ray trace of acoustic 

propagation modeling 
results from an Antares 

rocket launch.

Research Objective
• Development of accurate infrasound propagation models 

which account for environmental effects.
• Provide realistic atmospheric data cubes for infrasound 

propagation models from the surface to 180 km AGL.
• Develop models to design and predict performance of 

novel portable wind screens for infrasound microphones.

Challenges
• Incorporation of terrain and large scale turbulence effects 

into infrasound propagation models.
• Determining source dynamics for the generation of 

infrasound signals.
• Determining presence of wake vortices from wind 

screens.

ARL Facilities and Capabilities Available 
to Support Collaborative Research

• Quiet experimental range located in southern Maryland.
• Infrasound propagation models.
• Suite of atmospheric models to generate atmospheric 

data cubes over the earth.
• John M. Noble, W.C.K. Alberts, Stephen M. Tenney, 

“Infrasonic Propagation Modeling of Orbital Launch 
Vehicles,” J. Acoust. Soc. Am., 137, p. 2408 (2015).

• John M. Noble, W.C. Kirkpatrick Alberts, II, Sandra L. 
Collier, Richard Raspet, and Mark A. Coleman, “Wind 
Noise Suppression for Infrasound Sensors,” ARL Tech 
Report, ARL-TR-6873, March 2014.

• K. Alberts, S. Tenney, and J. Noble, “Assessment of 
Operational Progress of NASA Langley Developed 
Windshield and Microphone for Infrasound,” ARL Tech 
Report, ARL-TR-6417, April 2013.

• Porous fabric domes have been shown to perform very 
good as wind screens for infrasound sensors.

Complementary Expertise/ Facilities/ 
Capabilities Sought in Collaboration

• Time domain wave propagation modeling over large scale 
terrain features.

• Large scale wind tunnel with variable turbulence fields.
• Modeling of infrasound sources.
• Temporal variability of atmospheric processes from the 

surface to 180 km.Degrees Along Great Circle Path
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Slice of 
temperature with 

zonal wind 
contours and 

meridional wind 
profiles.

The turbulent wind flow 
over a hemispherical wind 

screen placed on the 
ground.

Hemispherical wind screens 
with difference material 

covers.

Scaling down the wind 
screens looking at the 
effects of difference 

material covers.
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