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U.S. Army Research Laboratory

Introduction to ARL
The Army Research Laboratory of the U.S. Army Research, Development and Engineering Command (RDECOM) is the Army’s 
corporate laboratory. ARL’s research continuum focuses on basic and applied research (6.1 and 6.2) and survivability/lethality 
and human factors analysis (6.6). ARL also applies the extensive research and analysis tools developed in its direct mission 
program to support ongoing development and acquisition programs in the Army Research, Development and Engineering 
Centers (RDECs), Program Executive Offices (PEOs)/Program Manager (PM) Offices, and Industry. ARL has consistently provided 
the enabling technologies in many of the Army’s most important weapons systems.
The Soldiers of today and tomorrow depend on us to deliver the scientific discoveries, technological advances, and the analyses 
that provide Warfighters with the capabilities to execute full-spectrum operations. ARL has Collaborative Technology Alliances in 
Micro Autonomous Systems Technology, Robotics, Cognition and Neuroergonomics, Network Science, an International Technology 
Alliance and new Collaborative Research Alliances in Multiscale Multidisciplinary Modeling of Electronic Materials and Materials 
in Extreme Environments. ARL’s diverse assortment of unique facilities and dedicated workforce of government and private sector 
partners make up the largest source of world class integrated research and analysis in the Army.  

ARL Mission
The mission of ARL is to provide innovative science, technology, and analyses to enable full-spectrum operations. 
 
Our Vision
America’s Laboratory for the Army: Many Minds, Many Capabilities, Single Focus on the Soldier.

ARL’s Organization
•Army Research Office (ARO) - Initiates the scientific and far reaching technological discoveries in extramural organizations: 

educational institutions, nonprofit organizations, and private industry.
•Computational and Information Sciences Directorate - Scientific research and technology focused on information processing, 

network and communication sciences, information assurance, battlespace environments, and advanced computing that 
create, exploit, and harvest innovative technologies to enable knowledge superiority for the Warfighter. 

•Human Research and Engineering Directorate - Scientific research and technology directed toward optimizing Soldier 
performance and Soldier-machine interactions to maximize battlefield effectiveness and to ensure that Soldier performance 
requirements are adequately considered in technology development and system design.

•Sensors and Electron Devices Directorate - Scientific research and technology in electro-optic smart sensors, multifunction 
radio frequency (RF), autonomous sensing, power and energy, and signature management for reconnaissance, intelligence, 
surveillance, target acquisition (RISTA), fire control, guidance, fuzing, survivability, mobility, and lethality.

•Survivability/Lethality Analysis Directorate - Integrated survivability and lethality analysis of Army systems and technologies 
across the full spectrum of battlefield threats and environments as well as analysis tools, techniques, and methodologies.

•Vehicle Technology Directorate - Scientific research and technology addressing propulsion, transmission, aeromechanics, 
structural engineering, and robotics technologies for both air and ground vehicles.

•Weapons and Materials Research Directorate - Scientific research and technology in the areas of weapons, protection, and 
materials to enhance the lethality and survivability of the Nation’s ground forces.

Unique ARL laboratory facilities and modeling capabilities provide our scientists and 
engineers with a world-class research environment.

ARL Workforce in 2013
•	1,980 Civilians - 38 Military
•	1080 Contractors (1027 full-time/53 part-time)

•1,379 Research Performing Workforce
•	552 (40%) hold PhDs
•	11 STs / 23 ARL Fellows

ARL’s Primary Sites 
•	Aberdeen Proving Ground, MD
•	Adelphi Laboratory Center, MD
•	White Sands Missile Range, NM
•	Raleigh-Durham, NC
•	Orlando, FL

Visit ARL’s web site at www.arl.army.mil
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FOREWORD

Dr. Thomas P. Russell 
Director, U.S. Army Research Laboratory

Thank you for your interest in this latest edition of Research@ARL. This 
compendium of previously published peer-reviewed journal articles 
represents the best of ARL research efforts in the topic area covered.  Our 
researchers take extreme pride in the quality of their research that will 
influence the way the U.S. Army operates 10, 20 and even 30 years from 
now.  Their dedication to our mission and the mission of the U.S. Army is 
focused on providing enhanced capabilities for our Soldiers of the future.  In 
this edition of Research@ARL, we take a look at the science and technology 
of imaging and image processing.

For over 400 years, optical instruments have been essential to military 
operations.  From the first telescopes and binoculars, imaging has 
expanded to put remote cameras on satellites and on autonomous 
platforms. Significantly, the U.S. Army Research Laboratory’s predecessor 
organizations developed technologies in the 1950s and 1960s that allow 
us to see in the dark, giving the U.S. military a strategic warfighting advantage.  In its 2012 Optics and Photonics: 
Essential Technologies for Our Nation, the National Academies highlighted the importance of imaging and optical 
technologies to the military.  

This volume of Research@ARL highlights recent contributions to imaging science being made by ARL researchers.  
These include advanced concepts in optical design, infrared technology, and image processing.  Further, using 
the power of signal processing, ARL researchers are altering the concept of imaging itself to develop capabilities 
not previously possible.  For example, by exploiting the quantum nature of light, ARL researchers are developing 
imagers that will allow cameras to see around corners.

I hope you will enjoy perusing the articles contained in this volume, and after doing so, I’m sure you’ll appreciate 
the advances our scientists and engineers are making to ensure our Army remains technologically superior.
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Imaging and Image Processing Research at ARL 
J. N. Mait, G. Videen, N. M. Nasrabadi, and K.-K. Choi

1. Introduction

Today cameras are ubiquitous.  In addition to capturing special moments with family and friends, they monitor traffic and they 
monitor us in public places.  They provide a full visual field as we back up our cars.  We can even swallow a pill-sized camera 
to image our intestinal tract.  Cameras are so widely used that 48 hours of video data are uploaded to YouTube every minute.1 
Through advancements in optics and photodetectors, cameras are now commodities.  Further, the proximity of cameras to 
processing chips in smartphone platforms is driving an explosion in imaging applications.

The U.S. military has been a significant but unheralded contributor to this revolution through its development of lightweight, 
small-scale optics, high-pixel-count focal-plane arrays, and algorithms for pattern recognition.  Further, nearly 50 years ago, 
predecessor organizations to the U.S. Army Research Laboratory (ARL) developed image intensifiers and infrared imaging 
systems to “own the night.”  First deployed in small numbers to soldiers in Vietnam, the prevalence of these technologies in 
military units during Desert Storm gave the U.S. a strategic advantage.

Today, ARL researchers are building on this heritage to alter the concept of imaging itself.  For many years, one created a 
camera by combining optics to form an image with a detector to capture it; more recently, one uses post-detection processing 
to enhance it.  When viewed as a whole, however, it is possible to spread the process of image formation across all three 
elements—optics, detectors, and signal processing.  Doing so has allowed ARL researchers to develop imaging capabilities that 
are not possible under the old paradigm.

This volume presents some of those capabilities, as well as other contributions made by ARL researchers to imaging and image 
processing, and this introduction provides context for ARL’s research investment in these areas.

2. Army Applications

Military applications of imaging are varied.  They include, for example, intelligence gathering (collecting specific information 
to support a query), surveillance (watching a particular region for activity), reconnaissance (gathering task-specific military 
information), targeting (labeling an object unequivocally as an object for destruction), and battle-damage assessment (BDA, 
assessing the status of a target after an engagement).  Broadly, they serve national policy, strategic policy, and tactical missions.  
At the national level, imaging assets are used to assess adherence to international treaties.  Critical strategic applications 
include intelligence, reconnaissance, and surveillance (ISR), and critical tactical applications include targeting and BDA.  
Further, as imaging assets have become available to field commanders, situational awareness (a tactical understanding of 
one’s surroundings) also has become a critical application.

The applications of imaging to military engagements were evident at the beginning of imaging science.  Although the microscope, 
invented in 1590, is recognized as the first optical instrument, speculation exists that the British defeat of the Spanish Armada 
in 1588 was enabled in part by the secret invention of the telescope.2  If true, the lesson of the Spanish defeat is that seeing 
farther than an adversary gives one the advantage of time.  If untrue, the story is at least apocryphal.  Two months after 
submitting his patent application for the telescope in 1608, the recognized inventor, Hans Lippershey, submitted another for 
binoculars.  To this day, binoculars remain a mainstay of tactical military units.

The invention of film in 1837 removed the need for a human observer and led to the development of the camera.  Consequently, 
the first aerial photograph was taken in 1858 by a photographer in a hot air balloon, and a camera launched on a kite in 
1882 initiated the field of remote imaging.  The practice of loading cameras with film canisters, placing them on aerial and 
high-altitude platforms, and retrieving the canisters after exposure was used to great effect in World War I and continued into 
the Cold War with U-2 reconnaissance aircraft and Corona, the first imaging satellite.  In 1962, these platforms provided the 
imagery that indicated the Soviets were constructing missile launchers in Cuba.

The invention of solid-state detection by Smith and Boyle in 1969 removed the need to retrieve film canisters and, in 1976, the 
National Reconnaissance Office launched the KH-11, the first satellite equipped with electronic imaging.  Such capabilities were 
used in the 1980s to “trust but verify” arms treaties with the Soviets.  (The first personal digital camera was invented in 1975 
by Steve Sasson of Kodak.)

In 1991, satellite imagery was used to create target lists for Desert Storm.  However, targeting mobile SCUD missile launchers 
revealed the need to shorten the latency between target detection and engagement.  Delays encountered in collecting and 
analyzing satellite imagery and distributing the results back to field commanders drove the need for persistent surveillance.

In a reflection of the past, cameras attached to balloons hovering over cities have returned.  The aerostat-borne Persistent 
Threat Detection System and its aircraft-borne brethren, like Constant Hawk, have reduced collection and distribution times.  But 
analysis remains a critical problem.  These systems generate massive amounts of digital image data that require considerable 
time to process and interpret.
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The scale reduction in imaging systems has been a boon for tactical units.  Small unmanned aerial vehicles are being developed 
to provide overhead imaging to company commanders, and camera-equipped robots are providing squads with situational 
awareness of buildings, caves, and other unexplored terrain before a Soldier enters.  No Soldier should ever again have to 
experience the fear of a “tunnel rat” in Viet Nam, armed only with a flashlight and a 45.

The imaging applications discussed up to this point require a camera that merely replicates what humans could see if their 
eyes were in the position of the camera.  However, a camera does not function like a human eye, which is both a disadvantage 
and an advantage.  For example, the dynamic range of the human eye is far greater than that of a camera.  Humans can see 
in bright sun and in moonless nights; whereas, most cameras do not image well, if at all, in dim light.  If they do, their images 
are saturated if just a little light is present.  On the other hand, our eyes detect radiation only in the visible portion of the 
electromagnetic spectrum.  Yet we can build cameras that detect radiation in different wavebands, such as infrared.  Infrared 
cameras are useful for seeing warm objects at night, such as humans and car engines.

In the next section, we highlight contributions made by ARL researchers to address the technical challenges presented by 
military applications of imaging.

3. ARL Research

3.1. Optics and Optical Design

The most fundamental principle underlying all imaging systems is that the angular size of the smallest object the system can 
resolve is proportional to the wavelength of the illumination and inversely proportional to the diameter of the input aperture.  To 
increase resolution, one increases the diameter of the optical system.  However, this also increases system volume.  A system 
capable of resolving objects half the size of another system nominally requires eight times the volume.  Further, the field-of-view, 
or how much of a scene an observer can see, is a function of the extent of the image plane.  An imager with a detector that is 
twice as large as another imager will have twice the field-of-view, but it will also have four times the volume.  Thus, designers 
must balance optical performance and system size.

For persistent surveillance, one would like to maintain resolution across a large field-of-view.  However, if one does not change 
the optics as the field-of-view increases, the quality of the image at its edges degrades.  Light arriving at a detector edge travels 
a longer path than light that arrives at the detector center.  For large fields-of-view, the additional path length produces a 
distorted, or aberrated, image.

Milojkovic and Mait investigated the trade-off between optical performance and physical size for imagers with a large field-
of-view in “Space-bandwidth scaling for wide field-of-view imaging” (page 13).  They considered two different types of lenses, 
a conventional plano-convex lens and a monocentric lens—i.e., one in which the front and back surfaces of the lens have a 
common center, combined with two different types of detectors, a conventional flat detector array and a curved detector array.  
For all cases, they quantified optical performance and physical characteristics, such as size and weight, as they varied the lens 
diameter from a few micrometers to a few meters.  Their analysis indicates that a monocentric lens imaging onto a curved 
detector outperforms other systems for the same requirements on optical performance.  Unfortunately, a monocentric lens 
requires more glass than a plano-convex lens with the same focal length and, therefore, weighs considerably more.  Milojkovic 
and Mait quantified the trade-off between weight and optical performance, and they also determined the minimum volume an 
imager must have to achieve a desired optical performance.  Their results allow optical designers to balance resources against 
performance when designing imaging systems for persistent surveillance.

The relationship between aperture diameter and wavelength holds at all wavelengths.  For the same aperture diameter, a longer 
wavelength implies worse resolution.  This is the case for infrared (IR) radiation, whose wavelength is approximately 10 times 
longer than visible radiation.  However, IR radiation conveys different information about a scene than visible radiation, which 
can be advantageous.

In the visible spectrum, people and objects reveal their physical characteristics only when illuminated by a source, such as the 
sun or indoor lighting.  Measurements made in the IR spectrum reveal the temperature of an object.  That is, a vehicle imaged 
using an IR system will look dark if it has not been used for hours and bright if its engine has just been turned off.  Similarly, a 
patch of soil produces a different IR image when it is in direct sunlight versus when it is in shade.

In “Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging,” (page 27) Gurton and Felton exploit the 
properties of IR imaging to distinguish between disturbed and undisturbed soil, which can potentially improve the detection 
of buried explosives.  Gurton and Felton demonstrated experimentally that IR imaging can reveal the differences in physical 
structure between disturbed and undisturbed soil.

Instead of measuring just the intensity of IR radiation reflected off a patch of soil, Gurton and Felton also measured the 
polarization of the radiation.  Polarization is a property of an optical field that indicates the orientation of its oscillations.  
Sunlight, for example, has no preferred polarization.  But sunlight reflected off a surface does.
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Through a series of field experiments, Gurton and Felton showed that IR radiation from disturbed soil is more polarized than 
undisturbed soil.  They also identified two sources of the polarization.  The IR radiation given off by warm, disturbed soil is 
strongly polarized.  Additionally, upon reflection, the disturbed soil polarizes the sun’s IR radiation.  Further, Gurton and Felton 
showed that the difference in the degree of polarization between disturbed and undisturbed soil is sufficiently large that one 
can reliably distinguish between the two.  When combined with other sensor modalities, such as radar, IR polarimetric imaging 
could enhance our ability to detect landmines, IEDs, and other buried threats.

At even longer wavelengths, beyond IR, radiation phenomenology changes again.  The region between optical and radio 
frequencies is the terahertz (THz) and gigahertz (GHz) regime, where wavelengths range between 300 μm and 3 mm.  In 
this frequency band, it is possible to image through obscurants such as dust, smoke, fog, and even textiles.  Thus, millimeter 
wave (mmW) imaging, as it is sometimes referred, offers potential solutions for helicopter pilots operating in degraded visual 
environments and for security personnel monitoring people for body-borne explosives at checkpoints or urban sites.

For the latter application, as in any persistence surveillance application, one desires a large field-of-view.  However, with 
wavelengths four orders of magnitude longer than visible, this is physically not possible.  Thus, a large field-of-view is achieved 
by scanning the imager across a scene.  Presently, scanning is achieved mechanically.  However, a more efficient method 
is to alter the radiation phase within the aperture of the imager so that its limited field-of-view is scanned across a scene 
electronically.  In “Design of 220 GHz electronically scanned reflectarrays for confocal imaging systems,” (page 45) Hedden, 
Dietlein, and Wikner considered the performance of an integrated reflectarray to provide electronic scanning.  They examined 
the tradeoffs between reflectarray size, system size, and the number of resolvable image pixels.  Consequently, they designed 
an imager that operates at 220 GHz (λ = 1.36 mm) with 8.3 cm resolution at 50 m.  This resolution allows one to discern the 
barrel of a pistol or blade of a short knife at 50 m.  The system aperture is 1 m and system length is 0.23 m, which provides the 
requisite resolution, a 30-degree full field-of-view, and still allows the system to be portable.  The reflectarray is 5.4 cm × 5.4 
cm, with 78 × 78 phase shifting elements spaced a half-wavelength apart.

Hedden, Dietlein, and Wikner also characterized the impact on the quality of an imaged point if one uses a 1-bit reflectarray—
i.e., one that can realize only two phase shifts, 0 and π, in comparison to a 2-bit reflectarray, one that can realize four phase 
shifts, 0, π/2, π, and 3π/2.  In simulations, the 1-bit reflectarray generated significantly more noise and errors than the 
2-bit reflectarray and did not meet the requirements for imaging.  Their design and analysis provide circuit designers with 
requirements for reflectarray performance and systems designers with an architecture for future systems to detect body-borne 
devices in cluttered urban environments.

3.2. Detection

Given the large commercial market, development of detectors for visible imaging is primarily the domain of industry.  However, 
the military continues to dominate the development of IR detectors.  By observing the natural radiation given off by an object, 
the military can detect and track targets at a great distance without relying on a light source. For the same reason, it is 
also a more reliable way to achieve situational awareness. The many uses of IR imaging include, for example, night vision, 
large area surveillance and reconnaissance, helicopter piloting in degraded visual environments, detecting and countering 
unmanned aerial systems, gun-sights for armored vehicles and dismounted soldiers, covert search and rescue, and decoy 
countermeasures.

To ensure military dominance on the battlefield, the Army seeks to maintain its superiority in infrared detection. To achieve this 
goal, the focal plane arrays (FPAs) the Army deploys must excel in all areas of performance including thermal sensitivity, image 
resolution, speed of detection, pixel uniformity and operability, system reliability and robustness, operation readiness, and 
simplicity. To enable large-scale deployment, the technology must also be manufacturable and affordable.

As the corporate research laboratory of the Army, ARL is exploring new frontier science and technology to revolutionize the 
Army’s IR capabilities.  To ensure no opportunities are overlooked, the Army engages in a wide range of research, from the 
most conventional to the most exotic infrared materials.  Currently, mercury cadmium telluride (HgCdTe) is the most sensitive IR 
material among competing materials. However, HgCdTe detector arrays are difficult to produce because the substrates needed 
to grow the material are not suitably large.  HgCdTe is traditionally grown on bulk cadmium zinc telluride (CZT) substrates, which 
are lattice-matched to HgCdTe.  However, CZT substrates are available only in relatively small sizes. Further, the difference in 
thermal expansion coefficients between a CZT substrate and its silicon (Si) read-out integrated circuitry reduces the reliability 
of large format FPAs due to repeated thermal cycling.

Some in the community believed this problem could be overcome by growing HgCdTe on composite substrates consisting of 
cadmium selenide and telluride, and silicon (Cd(Se)Te/Si).  They also believed this approach could potentially provide a route to 
affordable, robust third-generation FPAs.  However, due to the lattice mismatch between Cd(Se)Te and Si, this approach leads 
to high dislocation densities (greater than mid x 106 cm–2), which degrades performance.

Alternatively, one can change the IR material, and researchers at ARL have considered mercury cadmium selenide (HgCdSe) 
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as an alternative to HgCdTe.  With a lower variance in lattice constant, HgCdSe yields better lattice-matching to alternate 
substrates and offers better multi-color performance.

Additionally, HgCdSe offers flexibility in the choice of substrate.  With a lattice constant near 0.61 nm, HgCdSe is well-suited 
to be grown on either gallium antimonide (GaSb) or zinc telluride (ZnTe) substrates. GaSb is available as a bulk substrate with 
dislocation densities ~104 cm–2, and ZnTe can be alloyed with zinc selenide (ZnSe) to form lattice-matched ZnTe1–XSeX. There 
have been attempts to produce good quality material in the past, but ARL has produced the highest quality material reported.

The paper “Mercury cadmium selenide for infrared detection” by Doyle et al. (page 57) represents a significant step in reducing 
the background electron concentration of HgCdSe to a level suitable for fabricating devices. As described in the paper, by 
switching to high purity 6N Se source material, Doyle and his co-authors reduced the background electron concentration of 
HgCdSe samples by over an order of magnitude, from concentrations greater than 1017 cm–3 to the mid-1016 cm–3.  They reduced 
this further by annealing under Se.  However, before HgCdSe devices are developed, this background concentration must be 
reduced by at least another order of magnitude.  Current work is moving towards reducing the carrier concentration to develop 
IR detectors.

For less conventional IR technologies, quantum well infrared photodetector (QWIP) technology is a promising candidate except 
for one major weakness. Made from one of the highest quality semiconductor materials besides silicon, gallium arsenide (GaAs) 
QWIPs could easily fulfill all the Army’s IR requirements. Unfortunately, this material requires an unusual detection scheme.  To 
produce an electrical signal, incident light must travel sideways—i.e., parallel to the material layers.  When IR light shines on 
the detector surface, as in most other detector technologies, no light is detected.  The standard solution to this problem is to 
place a diffraction grating on top of individual detectors to disperse incoming light into different angles, thereby altering the 
propagation direction of the light. A portion of the light travels at a large angle and is detected. However, this approach has a 
quantum efficiency (QE) of only 5%.  With 95% of the incident light undetected, QWIPs cannot provide the military with the IR 
sensitivity and imager speed it needs.  Presently, 25 years after its invention, QWIP technology has not improved significantly, 
and it has long been deemed to be a low QE technology.

Nonetheless, ARL is determined to increase the QE of a QWIP and recent work shows great promise to increase it significantly.  
ARL’s approach includes developing a highly accurate electromagnetic (EM) model to calculate the EM field inside a complex 
detector geometry, a capability that the infrared community heretofore did not recognize or pursue. After considerable effort, as 
reported in “Electromagnetic Modeling and Design of Quantum Well Infrared Photodetectors,” Choi et al. (page 63) succeeded 
in establishing a finite-element EM model that one can apply to any arbitrary three-dimensional detector geometry. This model 
enabled the researchers to explain, for the first time, all the previously unexplained open literature experimental data, and for 
the first time to predict a definitive QE from any QWIP design. Aided by this EM model, the authors advanced a new detector 
concept, referred to as the resonator-QWIP or R-QWIP.  The R-QWIP utilizes the detector volume as a resonant cavity to diffract, 
capture, and store the otherwise unabsorbed light until it is eventually absorbed by the detector.  Choi predicted a QE for 
the R-QWIP as large as 75%.  Subsequently, the authors tested the R-QWIP concept on five different detector materials and 
observed QEs ranging from 15 to 71%. One of the more modest QE materials was fabricated into imaging arrays and yielded 
a QE of 30%, all in accordance with the model predictions. Even with this modest QE, thermal sensitivity—i.e., the detector’s 
lowest measureable temperature change is already 15 mK when it is operated at a 2.4 ms integration time. These metrics are 
many times better than the 20 mK operated at 20 ms in standard QWIP cameras, proving the potential of the new detector 
concept. Imaging arrays with higher QEs are under production.

Additionally, the developed EM model allows designers to have much greater control of the detector’s optical properties. In 
the near future, different R-QWIPs will be produced to suit a wide range of applications—for example, narrow band imaging 
through dust clouds, narrow band detection of chemical gases, simultaneous two-color detection for infrared search and track, 
sequential two-color detection for target detection and identification, broadband detection for hyperspectral imaging, and 
circular polarization detection for biological imaging.

In addition to advancing QWIP technology, using the resonant storage of light to enhance absorption is also applicable to other 
infrared materials and other optical devices, such as solar cells. The paper by Choi et al. shows how ARL’s basic and applied 
research can make an ineffective infrared technology useful to the Army and how this research can have an even broader 
impact on other scientific and technological areas.

To further strengthen the Army’s IR capability, ARL also works on IR detection by altering and manipulating a material’s optical 
properties in this wavelength regime. The paper “Passive infrared sensing using plasmonic resonant dust particles” by Mirotznik, 
et al. (page 75) reported a new way to control the IR emission spectrum from surfaces and particles. Most objects, either 
manmade or found in nature, reflect and emit IR radiation in a relatively smooth and broad spectrum; however, by applying 
structures with resonant absorption to the surface of those materials, the reflection and emission spectra can be enhanced 
or reduced at particular wavelengths. Moreover, by mixing small resonant particles (<100 μm) designed for several different 
wavelengths, one can form an IR dust that reflects or emits with a characteristic spectral signature. Such material-by-design 
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particles would be useful for a variety of practical applications. For example, when applied to a base surface, the resonant 
particles could be used to tune IR reflectance to mimic other natural or manmade surfaces.

The resonant particles and surface treatments are of particular interest for the Army. Potential applications include atmospheric 
sensing of chemical agents, calibration and training aids for hyperspectral imaging systems, and creation of custom infrared 
spectral signatures for passive friend-or-foe identification. For example, in the training-aid application, Soldiers could learn to 
use hyperspectral equipment to identify the spectral signature of dangerous chemical agents by observing an assortment of 
safe plasmonic samples that are designed to match the spectral signatures of the dangerous agents.

The paper presents computational and experimental results for particles that can be tuned to preferentially reflect or emit IR 
radiation within the 8–14 μm infrared band. The particles consist of thin metallic subwavelength gratings patterned on the 
surface of a simple quarter wavelength cavity. This design creates distinct IR absorption resonances by combining the plasmonic 
resonance of the grating with the natural resonance of the cavity. The resonance peaks are easily tuned by varying either the 
geometry of the grating or the thickness of the cavity. Measurements of reflection and emission from fabricated particles agreed 
with predicted performance. The tested particles use a one-dimensional grating that works for one polarization of incident light, 
but the paper also shows that a two-dimensional “fish net” grating should yield high-contrast spectral features for both incident 
polarizations. The author’s next step is to design and fabricate surfaces or particles for practical Army applications so that the 
new structures can be demonstrated and tested under field conditions.

3.3. Post-Detection Processing

ARL researchers have been at the forefront of research in image processing and scene analysis.  ARL actively conducts research 
on a large number of topics, such as automatic target recognition, multimodal sensor fusion, personnel detection, super-
resolution, face recognition, object tracking from video sequences, and the use of biometrics for human identification.  The 
following discussion addresses novel image processing techniques for four different applications: superresolution for video 
face recognition, multimodal sensor fusion, automatic target recognition in FLIR imagery, and target detection in hyperspectral 
imagery are presented.

Video imagery has become the most common and versatile form of media for capturing, analyzing, and disseminating a variety 
of information.  Video surveillance systems have led to their widespread use on commercial properties and for residential 
monitoring.  One major application of cheap, low-resolution video surveillance cameras is face recognition, which is crucial to 
aiding the law enforcement community and homeland security in identifying suspects and suspicious individuals on watch lists.  
However, face recognition performance is severely affected by the low resolution of individuals in typical surveillance footage, 
often due to the long distance between individuals and cameras, as well as the small pixel count of low-cost surveillance 
systems.  Fortunately, super-resolution algorithms have the potential to improve face recognition performance by using a 
sequence of low-resolution images of an individual’s face in the same pose to reconstruct a more detailed high-resolution facial 
image.

In “Face Recognition Performance with Super-resolution,” (page 85) Hu, Maschal, and Young from ARL, in collaboration 
with Hong and Phillips from NIST, developed a super-resolution algorithm for face recognition, and conducted an extensive 
performance evaluation using a methodology and experimental setup consistent with real world settings, including multiple 
subject-to-camera distances.

Using the same low-resolution camera, facial images were obtained at far (~13 m), mid (~9 m), and close (~5 m) range.  At 
the ranges, the face resolutions in terms of eye-to-eye distances were 5–10, 15–20, and 25–30 pixels, respectively.  Hu et al. 
doubled the effective resolution of the system using digital processing using a sequence of eight low resolution images.  They 
then submitted the super-resolved images to a state-of-the-art face recognition algorithm.

For recognition of faces at 9 m and, assuming a fixed 5% false alarm rate—i.e., one out of 20 times the system makes a false 
identification—the use of super-resolved images improved the rate of correct identification from 31% using original images to 
45%.  Their results show that super-resolution image reconstruction can improve face recognition performance considerably at 
the examined midrange and close range.

Forward-looking IR (FLIR) cameras provide the U.S. Army with the capability to see through darkness to detect and track objects 
of interest, such as humans and vehicles.  One of the major military applications of FLIR imaging sensors is automatic target 
recognition (ATR), which seeks to detect and recognize objects of interest (targets) in an environment full of clutter and imaged 
by an imperfect sensor, which introduces noise into the resulting signal.

An ATR system consists of several stages.  In the first, the system scans an entire image to identify regions of interest within 
which a potential target is detected.  In the second stage, background clutter is removed.  (Roughly, anything that is not 
considered part of the target is considered clutter.)  In the third stage, the system computes a set of features that are used in 
the fourth stage to classify the target—e.g., bus, sedan, or tank, or even more specifically, an M1 tank versus a T-72 tank.
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In “Sparsity-motivated automatic target recognition,” (page 97) Nasrabadi of ARL, in collaboration with Patel and Chellappa 
from the University of Maryland, developed a new classifier for long-wave IR imagery.  The new classifier is based on the concept 
of using a dictionary of target templates and the theories of compressive sensing (CS) and sparse representation to reduce the 
amount of data required for high confidence classification.  Their idea is to create a dictionary matrix of training samples from 
all classes of targets and represent the test sample as a few selected (sparse) linear combinations of the dictionary column 
vectors.  This sparse representation is then used to infer the target type (class) of the input sample.  They demonstrated that the 
performance of the proposed classifier is significantly better than classical classifiers, as well as previously developed classifiers 
from the ARL.

They also investigated the use of compressive sensing technique to reduce the dimensions of both the test samples and the 
training samples in the dictionary.  They demonstrated that by reducing the dimensionality from the original target templates 40 
× 65 pixels to only 256 incoherent measurements (features), the decrease in the classifier performance is insignificant.  When 
only 64 features are used the classifier performance is still 78%; however, when a mere 16 features are used; the classifier 
performance degrades drastically to 43%.

As mentioned, IR imaging systems provide capabilities that visible cameras cannot, such as seeing through darkness, shadows, 
fog, clouds, rain, snow, and smoke.  They are, however, subject to a number of inherent limitations, such as low resolution (in 
comparison to visible), the loss of non-thermal but important visual features (such as color and texture), and, under certain 
combinations of ambient and target temperatures, yield low thermal contrast between targets and background.  Given that 
visible cameras are relatively low-cost, easy to use, and capable of producing high-quality imagery under favorable conditions, 
researchers have considered exploiting the advantages of cameras in each spectral band to improve target detection.

In “Fusing concurrent visible and infrared videos for improved tracking performance,” (page 107) ARL researchers Chen and 
Schnelle studied the usefulness of fusing visible color and long wave IR imageries to improve the detection and tracking of 
moving targets.  Although a given sensor may be easily fooled sometimes, it is much harder to trick a number of sensors 
simultaneously at any given time.  Consequently, Chen and Schnelle investigated several pixel-based image fusion algorithms 
using image pyramids generated by the Laplacian, contrast, gradient, morphological, and several variations of the Discrete 
Wavelet Transform (DWT) methods.  Pixel-based methods perform fusion at the lowest level of image representation, the pixel.  
They do not require high-level abstract information and are, therefore, the simplest to implement.  Chen and Schnelle performed 
digital detection and tracking on the fused images, and compared the performance across the fusion algorithms against the 
performance of just using visible imagery and just using IR imagery.  Their results indicate that, in comparison to using just IR 
imagery, detecting and tracking performance degraded for fusion algorithms based on combining visible pixels with IR pixels.  
Performance was mixed for several pyramid-based algorithms, which use physical scale as a basis for representation, but were 
deemed inferior due to their high computational cost.  Fusion algorithms based on the DWT provided improved performance 
with the lowest computational costs of all pyramidal methods.  By exploiting the complementary strengths of visible and IR 
imagery, Chen and Schnelle demonstrated that fusion algorithms based on DWT image pyramids are capable of improving 
target detection and tracking.

Improved target detection based on the fusion of visible and IR imagery leads naturally for one to consider the advantages 
of using multiple wavebands.  This is the motivation behind hyperspectral imaging.  Hyperspectral cameras collect and 
process information across the electromagnetic spectrum by dividing a region of the spectrum into many narrow spectral 
bands, ranging typically from 50 to possibly 400 spectral bands.  Hyperspectral sensors look at objects using a vast portion 
of the electromagnetic spectrum well beyond the visible range.  Since different materials have unique spectral signatures, 
hyperspectral sensors are useful in agriculture and mineralogy to distinguish between crops and soil types.  However, one also 
can use spectral signatures to locate materials that pertain to a particular target.  Thus, hyperspectral imagery, which combines 
spectroscopy and imaging, is useful for object detection and classification.

A byproduct of hyperspectral imaging is the large amount of data that results.  How one processes this data efficiently and 
effectively is considered by Nasrabadi from ARL, in collaboration with Chen and Tran from Johns Hopkins University, in “Sparse 
Representation for Target Detection in Hyperspectral Imagery” (page 121).  Nasrabadi et al. developed a novel sparsity-based 
target detection algorithm to locate military targets in hyperspectral imagery in desert and forest environments.  Their proposed 
algorithm uses known target and background signatures from a spectral library to construct a composite dictionary consisting of 
target and background sub-dictionaries.  Then a hyperspectral test pixel is reconstructed approximately using very few training 
samples (i.e., sparse representation) from both target and background sub-dictionaries after imposing a sparsity constraint on 
the reconstruction.  The recovered sparse representation is used directly to detect the presence or absence of a target in the 
hyperspectral test pixel.  For targets that consist of multiple pixels, a smoothing constraint called the joint sparsity model is 
enforced in the reconstruction process to incorporate the assumption that neighboring spatial pixels consist of similar materials.  
By incorporating this contextual information directly into the classifier through the joint sparsity model, it is possible to enforce 
the classifier to make a joint decision on all the neighboring spatial pixels and improve the target detection performance.  This 
also avoids the usual post-processing fusion of the classifier outputs on the neighboring pixels.
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3.4. Computational Imaging

Image formation discussed up to this point uses optics to form an image, uses a detector to convert photons to electrons, 
and uses electronic processing to enhance information in the image.  However, if one redesigns the front-end optics in an 
unconventional way and, concurrently, redesigns the post-detection processing, it may be possible to generate the desired 
information in a simpler manner, or it may be possible to generate information that would otherwise be costly to produce.  
Linking optical design and post-detection processing in this way is referred to as computational imaging, a field in which ARL is 
a leader.

Although the field of computational imaging grew out of advances in electronic detection and processing, holography, when 
viewed in retrospect, is one of the first computational techniques developed to improve resolution.  As originally proposed, the 
post-detection processing was performed optically.

Developed in 1948 and made popular after the invention of the laser in 1960, holography interferes a reference beam coherently 
with a beam reflected from an object.  The resulting interference pattern is the hologram.  When the hologram is illuminated by 
the reference beam, the hologram produces an image of the object.  With the advent of electronic detection and processing, the 
interference pattern is now recorded on a FPA and the image is reconstructed digitally.  This is referred to as digital holography.

In “Digital holographic imaging of aerosol particles in flight,” (page 135) Berg and Videen apply digital holography to characterize 
aerosol particles.  Aerosol particle characterization has been a research priority in monitoring pollutants for many decades.  In 
the atmospheric-sciences community, such characterization has overlapped strongly with atmospheric dynamics and chemistry. 
More recently, biological aerosols have been recognized as a health threat within the medical and security communities. While 
counting and sizing strategies have been around for many years, rapidly attaining other properties of aerosols has proven 
elusive. In addition to accuracy, the basic requirements are speed, low cost, and automation. Traditional imaging techniques 
are hampered by the depth-of-field required to produce a sharp image, as the uncertainties of the aerosol position within a flow 
generally are well beyond the depth of focus. Elastic light scattering also has been pursued, but retrieving information from the 
scattered field has proven difficult.

Berg and Videen overcome these problems by interfering the scattered light from the aerosol with a reference beam to form 
a digital hologram.  By applying the Fresnel-Kirchhoff approximation in different focal planes, Berg and Videen overcame the 
focusing problem and reconstructed images from different depths.  Morphological information pertaining to the aerosols can 
be retrieved directly from the reconstructed images.  By applying holographic techniques to image aerosols in a flow, Berg and 
Videen provided a new tool to the aerosol community.

The depth-of-field problem—i.e., the depth of a region over which an imaging system is considered in focus—is inherent to all 
optical systems.  As discussed in Sec. 3.1, millimeter-wave technology allows one to scan individuals for body-borne explosives.  
In controlled situations, such as an airport, authorities can scan individuals in a portal.  In a dynamic urban setting, such control 
may not be possible, yet one would still like to scan individuals as they pass through a volume.  However, the 1-m aperture of 
the system designed by Hedden et al. has an extremely narrow depth-of-field.  In “94-GHz Imager with Extended Depth of Field,” 
(page 145) Mait et al. used computational imaging techniques to extend the region over which a millimeter wave image remains 
in focus.  Their approach is to aberrate the system in a known, controlled fashion (in their case, by using an optical element that 
has a cubic phase) and to perform simple post-detection processing.  It is not possible to extend the depth-of-field by five times, 
as Mait and Wikner did, using conventional means without incurring considerable cost.  The computational approach requires 
only one additional optical element and unique post-detection processing.  However, the computational approach requires 
that one alter their notion of the function of optics in an imaging system given the availability and capability of post-detection 
processing.

Whereas the cubic phase approach is a fixed solution to a problem, the ability to sense an environment and adapt the optics 
based on those measurements to improve system performance is another aspect of computational imaging.  In “Experimental 
demonstration of coherent beam combining over a 7 km propagation path,” (page 153) Weyrauch et al. apply adaptive 
techniques for imaging horizontally.  Unlike remote sensing, where cameras peer down through the atmosphere, tactical 
imaging is horizontal, i.e., parallel to the surface of the earth.  Under these conditions, atmospheric turbulence limits system 
resolution and fidelity.

Weyrauch et al. demonstrated that they can control phase variations in the optical path with sufficient precision to combine 
coherently seven laser beams emerging from an adaptive fiber-collimator array over a 7 km atmospheric propagation path.  This 
is a significant achievement, as this is not only more than an order-of-magnitude greater distance than previous experiments, 
but also extends the range into that of practical working distances of energy transmission through the atmosphere. To perform 
this feat, the wavefront phase at each fiber-collimator subaperture was controlled by its internal micro-fiber positioner. The 
output beams were combined coherently and focused onto their target. The phase locking and control of the wavefront were 
achieved by maximizing the target-return optical power using stochastic parallel gradient descent (SPGD) techniques.
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This technique offers a lighter and more efficient system in resolving the complex atmospheric turbulence problem and improves 
the resolution of the system. Direct sensing from the target and beam control through the SPGD mechanism eliminated an 
external bulky and costly wavefront-detection system. The coherent beam-combining technique delivers kHz-rated phase-
locking compensation and the maximum power to the target. The technology directly supports the Army’s needs in developing 
tactical and long-distance sensing, imaging, communication, and directed energy systems.

High-resolution imaging of distant objects has many military applications.  While lasers are used for long-distance illumination 
through the atmosphere, they create image speckle due to coherent phase aberrations.  Atmospheric turbulence can cause 
these speckle spots to wander on the target, which can limit resolution.

In “Turbulence-free ghost imaging,” (page 157) Meyers, Deacon, and Shih present a fundamentally new approach to meet 
this challenge. Turbulence-free ghost imaging is a computational imaging technique that can reconstruct an object that is not 
in a conventional sense imaged by the system.  Through imaging experiments performed at ARL, Meyers et al. suggest ghost-
imaging can be performed free of the adverse effects of turbulence.

Meyers, Deacon, and Shih used two-photon interference and the superposition of the quantum properties of light to image 
through turbulence.  While a single-pixel light sensor sensed the total light reflected from an object, a second sensor camera 
imaged the photons coming just from the laser light source.  The coincident measurements were combined computationally, 
creating the ghost image of the target.

Ghost imaging shares some attributes with conventional holography.  In conventional holography, signal and reference beams 
interfere as coherent waves to form a pattern that generates an image.  In ghost imaging, signal and reference beams combine 
to form an image based on the correlation between their quantum properties.  To function properly, though, ghost imaging 
requires fast, single-photon-sensitive cameras.

The work by Meyers, Deacon, and Shih provides a unique, fundamental contribution to advanced imaging techniques. Ghost 
imaging is different from conventional imaging in that the illuminating light is imaged, as opposed to the object. Quantum 
two-photon interference provides improved resolution to the images as the aberrations caused by atmospheric turbulence are 
cancelled out in the quantum process.

4. The Future of Imaging

As the previous discussion indicates, advances in detectors and electronic processing have expanded the capabilities of optical 
sensing beyond replicating the appearance of an object and the computational imaging examples are only just the beginning.  
Faster detectors, such as the ones used for ghost imaging, and smaller cameras will allow optical designers to exploit both time 
and space to create even more capabilities.  For example, wafer-scale cameras enable the development of small, multi-aperture 
cameras, which has allowed designers to create very thin cameras,3 cameras with high dynamic range,4  and cameras sensitive 
to polarization.4

Extremely fast detectors enable fast cameras and have enabled femtography.5  In a single femtosecond (10–15 seconds), 
light propagates a few millimeters.  Using a detector array capable of femtosecond exposure times, it is possible to track the 
propagation of optical beams and, consequently, to label rays.  Using these labels, it is possible to keep track of rays as they go 
out of sight and return after being reflected by an object out of the camera’s line of sight.  In this way it is possible to perform 
non-line-of-sight imaging, to see around corners, without relying upon the quantum nature of light.  Such capabilities will no 
doubt be of extreme value to the military.  The future of imaging remains very bright.
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We examine the space-bandwidth product of wide field-of-view imaging systems as the systems scale in
size. Our analysis is based on one conducted to examine the behavior of a plano-convex lens imaging onto
a flat focal geometry. We extend this to consider systems with monocentric lenses and curved focal geo-
metries. As a means to understand system cost, and not just performance, we also assess the volume and
mass associated with these systems. Our analysis indicates monocentric lenses imaging onto a curved
detector outperform other systems for the same design constraints but do so at a cost in lens weight.
OCIS codes: 110.0110, 220.4830, 220.3620.

1. Introduction

Theproliferationof imagingassets for securityandde-
fensehasgeneratedademand forhighresolution ima-
ging across an ever increasing field-of-view (FOV).
The off-the-shelf engineering solution to this problem
is to tile the desired FOV with numerous high resolu-
tion cameras. This approach, though simple to imple-
ment, uses limited resources inefficiently, such as
volume andweight. Amore inspired approach is to re-
design the optics. However, designers very quickly
realize how difficult it is to maintain high resolution
as the FOV increases. Using simple arguments re-
flected in Fig. 1, Lohmann showed that performance
is limited primarily by optical aberrations [1].

Lohmannandhis colleagues used space-bandwidth
as ametric for imaging performance in a second,more
analytic, study and examined the limits on space-
bandwidth product (SBWP) as a function of FOV
[2]. Their analysis of a simple plano-convex lens ima-
ging onto a flat detector provided a rough indication of
thephysical scaleswhengeometric aberrations, as op-
posed to diffraction, dominate imaging performance.

To provide high resolution over a wide FOV, re-
searchers have proposed alternate lenses and alter-
nate detector geometries to overcome aberrations
[3,4,5,6,7,8,9,10]. For example, a curved detector re-
moves geometric image distortions introduced at the
edge of the FOVwhen imaging onto a flat detector [4]
and fabrication of such detectors is an ongoing re-
search topic [5,6,7,8]. Further, by its nature, a mono-

centric system, i.e., one in which the front and back
surfaces of the lens have a common center, re-
duces the aberrations imposed on large off-axis rays.
Monocentric triplets are typically used to correct
chromatic aberrations in eyepieces [11]. Although in-
terest in monocentric systems has recently increased
[9,10], the advantages of such systems have a long
history, as evidenced by the Sutton panoramic
water lens patented in 1859 and the Baker ball lens
from 1942 [3]. The aberrations can be reduced even
further if the refractive index of the lens is
graded [12].

In particular, [4] presents a quantitative analysis
of the performance of three different imaging sys-
tems at a single scale: a plano-convex lens imaging
onto a flat focal geometry, a Cooke triplet imaging
onto a flat focal geometry, and a ball lens imaging
onto a curved focal geometry. The linear scale of each
system is approximately 10 mm, and, in addition to
comparing on- and off-axis point spread functions,
the analysis examines chromatic behavior for three
visible wavelengths. The results indicate that a ball
lens imaging onto a curved focal plane provides the
best overall performance.

In our work, we explore how changes in optical de-
sign affect imaging performance as a function of
system size. To do so, we base our work on that of
Lohmann’s and extend it to account for changes in
lenses and in detector geometries. Using our analy-
sis, we examine the impact on system size andweight
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as performance demands increase and we highlight
general trends. We do so, however, for only a single
wavelength. We do not consider chromatic behavior.
Further, our approach can be used by others as a
framework for generating quantitative data when
necessary.

In Section 2 we present the metrics Lohmann used
to characterize optical performance and, in Section 3,
we describe our method for imaging analysis. We
present our data and provide a discussion of it in
Section 4 and conclude in Section 5 with additional
discussion and summary remarks.

2. Space-Bandwidth Analysis

In his analysis, Lohmann used the space-bandwidth
product S as a measure of image quality. The space-
bandwidth S is the number of resolvable points in an
image plane,

S � A
ares

; (1)

where A is the image plane area and ares is the area
of a single resolvable spot. One can approximate the
resolution spot size ares as the sum of contributions
from diffraction and aberration [13],

ares � �δx�2 � �δξ�2 � �λf ∕D�2 � �ξ2; (2)

where λ is the wavelength of illumination, f and D
are the lens focal length and diameter, respectively,
and ξ is a measure of lateral geometric aberrations.
The term �ξ2 is its variance. To increase space-
bandwidth, one can increase the size of the image
plane, i.e., increase the FOV, reduce the size of the
resolvable spot, or both. However, resolution area
and FOV are linked to the image system and cannot
be controlled independent of one another.

In [1], Lohmann assumed a constant FOV and
considered only the impact on space-bandwidth as
a function of the resolution spot size. In this case,
if one considers only diffraction, an increase in lens
diameter reduces the size of a resolvable spot, which,
in turn, increases the space-bandwidth. However, be-
cause increasing the diameter of a lens also increases
the impact of aberrations, the relationship between
the size of a lens and its space-bandwidth is more
complex than that specified simply by diffraction.

Lohmann used Eqs. (1) and (2) to generate the
heuristic curves represented in Fig. 1, which indicate
the relationship between the scale of an imaging sys-
tem and its space-bandwidth. Figure 2 indicates how
the imaging system is scaled by a factor M, while the
f -number,

f# � f∕D; �3�

is held constant.
In the absence of aberrations, S will increase with-

out bound as the imaging system increases in size. In
contrast, because aberrations scale with the size of

the imaging system, in the absence of diffraction,
there would be no improvement in S as the system
increases. Thus, the actual performance of an ima-
ging system is a combination of these behaviors:
increasing with scale in regions where diffraction
dominates and constant in regions where aberra-
tions dominate.

The last curve generated by Lohmann indicates
how designers compensate for the limitations im-
posed by aberrations. To increase S as system scale
increases, the f -number of the system must necessa-
rily also increase. In a second, coauthoredpublication,
Lohmann explored this link between f -number and
space-bandwidth, and considered also the FOV of
the system [2]. It is this publication that provides
the starting point for our analysis.

With reference to Fig. 3, Lohmann and his collea-
gues considered the space-bandwidth properties of
the simple plano-convex lens represented in the
upper left. In comparison to the analysis in [1], which
considered fixed f -number lenses and a single scaling
factor M, the analysis in [2] considered variable f -
number lenses. In addition, it considered the FOV of
the imaging system. As represented in the figure, we
extend Lohmann’s analysis to include monocentric
lenses in addition to plano-convex as well as two dif-
ferent focal plane geometries, flat, and curved. We
also consider the special case of a Luneburg lens with
a curved detector on its surface. A Luneburg lens
is monocentric with a variable refractive index,

Fig. 1. Space-bandwidth of an optical system as a function of
scale. Reproduced from [1].

Fig. 2. Imaging system scaling considered by Lohmann. (a) Base
system. (b) Scaled system.
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n�r� � �2 − �r∕R�2�1∕2, that images collimated light
perfectly on its surface [12].

A. Space-Bandwidth as a Function of Focal Plane
Geometry

It is important to consider the geometry of the focal
plane since it affects the numerator of Eq. (1) and the
size of the detector sets the FOV. With reference to
Fig. 4, the image area A as a function of the half-
angle β for a flat focal plane represented is

Aflat � �2f#D tan β�2; (4)

and for a curved focal plane,

Acurv � 2π�f#D�2�1 − cos β�: (5)

In the absence of aberrations, the size of a resolva-
ble spot for a flat detector is

ares;flat �
� λf
D cos3 β

�
2
; (6)

and for a curved detector

ares;curv �
� λf
D cos β

�
2
: (7)

The cosine-cube scaling of the conventional diffrac-
tion limited spot on a flat detector results from the
oblique incidence of the illumination on the aperture,
the increased distance rays have to travel (relative to
on-axis), and the oblique incidence of the illumina-
tion on the detector. With a curved detector, the latter
two factors are removed and only the cosine scaling
due to the oblique incidence of the illumination on
the aperture remains. As a point of reference, if this
cosine scaling is absent, the resolvable spot follows
from the conventional definition,

aideal �
�λf
D

�
2
: (8)

This assumes a uniform beam illuminates the lens
aperture. Also, in essence, we approximate the diam-
eter of the spot by its full-width at half-maximum.

Thus,Eq. (1) in combinationwithEqs. (4)–(7), yields
closed-form expressions for the space-bandwidth
given the two detector geometries,

Sflat � 4�D∕λ�2�1 − cos2 β�cos4 β; (9)

Scurv � 2π�D∕λ�2�1 − cos β�cos2 β: (10)

These functions are represented in Fig. 5. The exis-
tence of a maximum is due to the fact that, for small
angles, the rate at which the spot size grows is slower
than the rate atwhich the detector area increases. For
large angles, this rate behavior reverses. The angle at
which this behavior switches is the one that yields
maximum space-bandwidth. For a flat detector, this
angle is β � 35.2° and for a curved detector, β �
48.2°. Not only is the angle that maximizes space-
bandwidth larger for a curved detector than a flat
one, the value of the space-bandwidth is 1.5 times lar-
ger.Thisprovides some indicationof theadvantagesof
a curved detector over a flat one.

The ideal behavior noted in Fig. 5 is derived as-
suming no aberrations and no geometrical scaling.

Fig. 3. Representative imaging systems considered for analysis.

Fig. 4. Geometry for rays assuming a (a) flat and (b) curved focal
plane.

Fig. 5. Space-bandwidth product S as a function of half-field
angle β for flat and curved detectors.
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Thus, as the area of a curved detector increases, the
number of resolvable spots increases without limits.
The normalized curve shown follows 1 − cos β.

However, this analysis is valid only in the absence
of aberrations. How far the space-bandwidth devi-
ates from the values in Eqs. (9) and (10) is a measure
of the severity of aberrations. To assess this, we need
to analyze the optical performance of the lenses in
combination with these detectors. In the next sec-
tion, we describe the procedure we used to do so.

3. Lens Analysis

In this section we present the results of our optical
simulations to assess the impact of both diffraction
and geometrical aberrations on space-bandwidth.
The lenses we analyzed (plano-convex, monocentric,
and Luneburg) are represented in Fig. 6.

Our analysis followed as closely as possible the ap-
proach in [2]. We analyzed performance at a single
wavelength λ � 500 nm, i.e., we did not consider
chromatic behavior, and, except for the Luneburg
lens, assumed n � 1.5. (We selected real glass mate-
rials that met this criteria.) We varied the lens diam-
eter,D, from 50 μm to 5 andm the f -number, f#, from
1 to 1000.

For each lens and detector geometry, we varied the
angle of the incident beam over the FOV and deter-
mined its corresponding spot size on the detector. To
do so, we launched a large number of rays from a par-
ticular field point, including the chief ray, into the en-
trance pupil of the lens, and traced them through the
optics to the image surface. We calculated the spot
size as the root-mean-square of the differential dis-
tance between the location of the chief ray and the
locations of the other rays. We also calculated the dif-
fraction spot size from Airy disk.

We inserted these values into Eq. (2) to determine
S and, in accordance with [2], assumed the value of
resolution spot size was valid across the entire detec-
tor plane. We designated the maximum value of
space-bandwidth Smax and the angle at which this
maximum was achieved, βmax.

The details pertaining to each lens and detector
geometry are described in Appendix A. It is impor-
tant to note that, again in accordance with the
approach used in [2], we did not consider all potential
means to improve lens performance. For example, we
did not use any aspherical surfaces.

One example of the results presented in [2] is re-
produced in Fig. 7. Our results are presented in
Figs. 8–12. We feel the consistency between Figs. 7
and 8(a) validates our approach and gives us confi-
dence in drawing conclusions from the data for differ-
ent systems, which we present in Section 4.

In addition to Fig. 7, we compared other data from
[2] to ours. Our data were consistent with [2] in all
cases, e.g., spot size as a function of angle. However,
we felt that including all comparisons would have
overwhelmed the reader and added little to the dis-
cussion. We present the space-bandwidth data for its
relevance to this discussion. To aid the comparison
between our work and [2], Fig. 8 contains data for
an additional lens with D � 5 μm that the other lens
systems do not. ZEMAX was unable to converge con-
sistently to a design for all of systems with such a
small diameter.

We note the special case of the Luneburg lens in
Fig. 12. The Luneburg lens, in effect, provides ideal
imaging because the area of the smallest resolvable
spot is independent of the angle of incidence. The
space-bandwidth is maximum at 80° because that
was the upper limit of angles we considered. (Beyond
80° ZEMAX was unable to generate consistently
stable data). Based on our data, the space-bandwidth
of the Luneburg lens as a function of angle β is

Fig. 6. (Color online) Lenses analyzed. (a) Plano-convex. (b) Monocentric. (c) Luneburg.

Fig. 7. βmax as a function of f# for variable lens diameters for a
plano-convex lens imaging onto a flat detector. Reproduced from
[2].
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SLuneburg � 1.34�D∕λ�2�1 − cos β�: (11)

The compact presentation of data presented in
Figs. 8–12 belies the effort required to generate it.
Data collection for a single combination of lens type
and detector requires the analysis of elements with
six different diameters and, for each diameter, 16 f -
numbers, for a total of 96 lenses. Since we analyzed
31 field points for plano-convex lenses and 41 field
points for monocentric lenses, we therefore deter-
mined 2976 spot size data values for a single detector
geometry with a plano-convex lens and 3731 values
for a single detector geometry with a monocentric
lens. Not including the analysis of the Luneburg lens,
this means we generated and analyzed over 13,000
optical spots to generate the graphs presented in this
section.

Needless to say, our data collection was not per-
formed manually. Instead, we implemented an auto-
mated method of data collection using a ZEMAX
extension file written in C++ to drive ZEMAX
externally. Because of the unstable nature of the

optimization algorithm in the programming envi-
ronment required for this task, development of the
automation method took a considerable amount of
time to test and validate.

4. Data Interpretation

In this section, we attempt to draw conclusions from
our results. We need to be cautious when making
comparisons between systems because each was op-
timized using slightly different criteria. Nonetheless,
we feel the trends displayed are consistent and allow
us to provide some explanation for the behavior ex-
hibited. For example, the improvement in maximum
space-bandwidth in Fig. 9(b) over Fig. 8(b) is due
most likely to the close match between the curved
detector and the Petzval surface shape.

Figures 8 and 10 reaffirm the conclusions from [2].
Only for physically small lenses and lenses with
large f -numbers are aberrations sufficiently small
that diffraction dominates their performance. Small
f -number lenses and large diameter lenses are most
affected by aberrations.

Fig. 8. (Color online) Analysis of a plano-convex lens imaging onto a flat detector. (a) βmax and (b) Smax as a function of f# for variable lens
diameters.

Fig. 9. (Color online) Analysis of a plano-convex lens imaging onto a curved detector. (a) βmax and (b) Smax as a function of f# for variable
lens diameters.
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We note also in these figures that the FOV defined
by diffraction is an upper bound. This indicates that,
for small f -number lenses, the size of the resolution
spot from aberrations is larger than the diffraction
spot size. But, as f -number increases, the impact
of aberrations lessens and behavior is dominated
by diffraction. This behavior is true for both plano-
convex and monocentric lenses used in conjunction
with a flat detector.

As is evident in Figs. 9 and 11, this changes with a
curved detector. In fact, the behavior of plano-convex
and monocentric lenses differs considerably. For a
plano-convex lens, the angle that achieves the max-
imum space-bandwidth starts at 38° for an f∕1 lens,
increases rapidly to a peak angle, and decreases
slowly to the angle defined by diffraction. Lenses
with small diameters approach the diffraction-
defined angle more rapidly than large lenses. Large
f -number lenses are again dominated primarily by
diffraction.

The shape of the curves in Fig. 9(a) reflect the
interplay between aberrations and diffraction for

off-axis angles. For large off-axis angles, the aperture
is effectively stopped down. This increases the dif-
fractive spot to a size that is, apparently, comparable
to the one generated by off-axis geometric aberra-
tions. We note that, although a curved detector geo-
metry increases the value of βmax for small f# lens,
the increase in Smax is small. This is due to the de-
finition of space-bandwidth, which assumes a con-
stant spot size across the entire image. The spot
sizes produced for large off-axis angles are larger
than those for on-axis spots. An alternative defini-
tion of space-bandwidth, one that allows for variation
in spot size across the image, might show amore dra-
matic increase in space-bandwidth with angle.

For a monocentric lens with a curved detector, all
rays provide effectively on-axis performance. How-
ever, geometric aberrations are reduced due to the
stopped-down aperture at large off-axis angles.
Figure 11 therefore reflects this reduction in off-axis
geometric aberrations.

The behavior exhibited in Fig. 12 is easily ex-
plained by Eq. (11). Since the value of βmax is the

Fig. 10. (Color online) Analysis of a monocentric lens imaging onto a flat detector. (a) βmax and (b) Smax as a function of f# for variable lens
diameters.

Fig. 11. (Color online) Analysis of a monocentric lens imaging onto a curved detector. (a) βmax and (b) Smax as a function of f# for variable
lens diameters.
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same in each case, the space-bandwidth is constant
for a fixed diameter.

Figure 13 compares the performance of each sys-
tem we analyzed for two different scales, D �
50 mm and D � 500 mm. These scales represent
the ones a designer might consider for imaging with
100 megapixel to 10 gigapixel detectors. As noted in
the beginning of this section, we exercise caution in
making these comparisons and concentrate primar-
ily on trends and relative magnitudes. For f -numbers
greater than 10, detector geometry dominates and a
curved detector provides about 2 orders of magnitude
improvement in space-bandwidth over a flat one.
Given that large f -number lenses have long focal
lengths, most likely detector shape dominates be-
cause the distinction between lens characteristics
is marginal.

For f -numbers less than 10, lens properties domi-
nate. For a flat detector, a monocentric lens provides
approximately 2 orders of magnitude improvement
in space-bandwidth over a plano-convex lens and

approximately 4 orders of magnitude improvement
for a curved detector.

For both scales, the performance of a plano-convex
lens with a curved detector is comparable to a mono-
centric lens with a flat detector. That is, equivalent
performance can be achieved using either a poor
quality lens with a curved detector or high quality
lens with a flat detector. However, replacing a flat de-
tector in amonocentric systemwith a curved detector
improves performance for low f -number lenses by
several orders of magnitude. The curved detector,
no doubt, takes full advantage of the increased
FOV provided by a monocentric lens. The Luneburg
lens, which essentially represents an upper bound on
performance, provides additional improvement over
extremely fast (≈f ∕1) monocentric lenses.

To underscore the link between our work and [1],
we reformat our data in Fig. 14. For each imaging
system, we present space-bandwidth as a function
of lens diameter D for variable f -number lenses. Re-
sults for the Luneburg lens are plotted as a dashed

Fig. 12. (Color online) Analysis of a Luneburg lens imaging onto a curved detector. (a) βmax and (b) Smax as a function of f# for variable lens
diameters. Since the value of βmax is independent of f# and D, all curves in (a) lie on top of one another.

Fig. 13. (Color online) Smax as a function of f# for various imaging systems with (a) D � 50 mm and (b) D � 500 mm. Labels for the
graphs indicate lens type (pcx—plano-convex, mc—monocentric, lu—Luneburg) and detector geometry (flat versus curved).
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line in each figure. Note that, with space-bandwidth
plotted on a logarithmic scale, a quadratic function is
a straight line with slope 2 (i.e., an order magnitude
change in linear scale yields 2 orders of magnitude
change in space-bandwidth).

As predicted by Lohmann in Fig. 1, for a fixed f -
number lens, as the size of the lens increases, the
space-bandwidth saturates and the only way a de-
signer can increase space-bandwidth is to change the
imaging system. Given the discussion in [1], this is
possible only by increasing the f -number of the lens.
This is in contrast to our approach, which considers
alternate lenses and detectors.

Figure 14 highlights again the advantages of a
monocentric lens and a curved detector. Most
systems exhibit quadratic behavior. However, the
space-bandwidth of f ∕1 and f ∕2 lenses are already
saturated when D � 100 mm.

In addition to supporting Lohmann’s explanation
for lens behavior, our analysis can also be used as an
aidtodesign.Figure15(a) indicatesthesystemvolume
Vs required to achieve a desired space-bandwidth for
each scale and lens system we analyzed, where

Vs � Vℓ � Va; �12�

Vℓ is the lens volume, andVa is the volume required to
image onto thedetector.Althoughweusedall lens sys-
tems to generate Fig. 15(a), not all data points are
shown. Instead, the values shown for each system
are those that produce maximum space-bandwidth
for a minimum amount of volume.

The formulae we used for Vℓ and Va are listed in
Tables 1 and 2. For plano-convex lenses, we used the

volume determined by ZEMAX. For all systems, h is
the axial image distance from the lens center. We as-
sumed the volume of the Luneburg lens is the same
as the monocentric lens. There is no volume of air for
the Luneburg lens because the image surface is coin-
cident with the lens surface.

The trends indicate that systems with flat detector
planes are least efficient in terms of volume for a
given space-bandwidth. An order of magnitude in-
crease in space-bandwidth requires a three-order
magnitude increase in volume or, more simply, an or-
der magnitude increase in each dimension of the box
that defines the imaging system. Note that a mono-
centric lens, with its spherical shape, requires more
volume than a plano-convex lens. This is reflected as
a constant volume offset.

Systems with curved detector geometries use vol-
ume more efficiently. With a detector plane attached
to the surface of the lens, the Luneburg lens uses vol-
umemost efficiently. The volume increases by only 1.5
orders ofmagnitude for an order ofmagnitude change
in space-bandwidth. Themonocentric lens has a slope
of 1.6 and the plano-convex lens, 2.2. If one discounts
theLuneburg lens as an impossible ideal, one can con-
clude fromFig. 15(a) that, given a fixed amount of vol-
ume, the monocentric lens with a curved detector
yields the highest space-bandwidth.

However, in addition to volume, scaling of lens
mass mℓ (which is easily converted to weight) is also
a critical parameter of interest. This is represented
in Fig. 15(b). Again, the values shown are those that
produce maximum space-bandwidth for a minimum
amount of mass. Not surprisingly, the spherical
shape of a monocentric lens is detrimental in terms

Fig. 14. Smax as a function of D for various imaging systems. (a) Plano-convex lens and flat detector. (b) Plano-convex lens and curved
detector. (c) Monocentric lens and flat detector. (d) Monocentric lens and curved detector.
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of mass. A monocentric lens imaging onto a flat de-
tector geometry is least efficient in terms of mass be-
cause a larger lens is required to achieve the same
space-bandwidth when compared to a curved detec-
tor geometry. The mass of a plano-convex lens is re-
duced with increasing space-bandwidth because lens
f -number increases and, therefore, its thickness is
reduced. [See Fig. 16 and the discussion contained
in Appendix A.] Thus, an order of magnitude increase

in space-bandwidth reduces the mass by one-third an
order of magnitude.

System density ρ as a function of space-bandwidth
is represented in Fig. 15(c), where

ρ � mℓ

Vs
:

We use this definition based on our assumption that
the lens is the primary contributor to system mass.
Note that systems with monocentric lenses exhibit a
constant density, whereas the density of plano-
convex systems decreases with increasing space-
bandwidth. This reduction in density is due to the
reduction in mass as mentioned previously. The con-
stant density for monocentric lens systems indicates
lens size is the dominant characteristic. An increase
in space-bandwidth demands an increase in lens
radius, which dictates system volume and mass.

If one compares Figs. 15(a), 15(b), and 15(c), it is ap-
parent that the weight advantage offered by plano-
convex lenses is negated by its large volumetric costs.
Conversely, a heavy system is the price one pays for
the optical performance provided by a monocentric
lens.

In our final comment, we note that space-
bandwidth is a measure of optical resolution ele-
ments, or resels, which differs from the number of
pixels in a detector array. Depending upon the size
of a single detector pixel, the number of pixels per
resel can vary. There should be at least one pixel
per resel but the number can be between four and
eight for a well sampled system. Given this caveat,
Fig. 15 can provide some indication about the system
scale and weight required to achieve a given imaging
capacity. For example, Fig. 15 indicates that a 10-
gigapixel (Gpx) imager should require on the order
of 1 m3 of volume.

5. Summary and Conclusion

We examined the space-bandwidth of wide FOV ima-
ging systems as the systems scale in size. We ex-
tended Lohmann’s analysis for plano-convex lenses
imaging onto flat focal geometries to systems with
monocentric lenses and curved focal geometries,
which have been proposed as technologies to provide
high resolution wide FOV imaging. To understand

Fig. 15. (Color online) Physical characteristics as a function of
space-bandwidth for imaging systems analyzed. (a) System vol-
ume. (b) Lens mass. (c) System density.

Table 1. Vℓ for Imaging Systems Analyzed

lens Vℓ

plano-convex ZEMAX
monocentric 4π

3 R3
ℓ

Table 2. Va for Imaging Systems Analyzed

detector geometry

lens flat curved

plano-convex π
3h

3 tan2 β 2π
3 h3�1 − cos β�

monocentric π
3h

3 tan2 β − 2π
3 R3

ℓ �1 − cos β� 2π
3 h3�1 − cos β� − 2π

3 R3
ℓ �1 − cos β�
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system cost, and not just performance, we also as-
sessed the volume and mass associated with these
systems.

The most straightforward conclusion we draw, that
a curved detector improves the performance of an
imaging system, provides justification for theDARPA
Hemispherical Array Detector for Imaging program
[8].Our analysis, however, also supports development
of monocentric lens systems. Our analysis indicates
that monocentric lenses imaging onto a curved detec-
tor outperform other systems for the same design con-
straints but do so at a cost in lens weight.

More important than simply providing these sim-
ple conclusions, our work also provides a framework
for analysis. Our particular instantiation of the fra-
mework suggests the above conclusions but we recog-
nize that further investigation is required to validate
their universality. For example, one can use our
analysis technique to consider the performance of
multiscale optical systems, such as those for chip-
to-chip optical interconnects [14] and those to reduce
aberrations in wide FOV imaging [15].

We note that Fig. 15 considers only scaling the op-
tics. An analysis useful for a designer must consider
scaling of the postdetection electronics as well. In
fact, a more exact analysis would consider the cur-
ved detector approximated by a collection of two-
dimensional flat detector arrays. Is there an optimal
array size under such conditions?

Finally, in this work we have considered only opti-
cal means to reduce the impact of aberrations. We
have not considered the performance of optics com-
bined with electronics. A recent analysis based on
Lohmann’s heuristic link between f -number and
scale indicates some improvement is possible [10].
If the scale factor M � f 1∕3# as Lohmann prescribes,
space-bandwidth scales roughly as M4∕3. Using com-
putation after detection, it is possible to change this
toM2.8∕1.9 ≈ M3∕2. This remains to be verified. Even if
true, it is imperative that a designer know the cost of
implementation for a given level of performance.
That is, which implementation is more costly, a
monocentric lens with a curved detector or a plano-

convex lens with a curved detector followed by com-
putation? We hope to create an analysis framework
that will allow us to address this point.

Appendix A: Lens Analysis

We describe in this appendix the procedures we used
to optimize and determine lens performance. The
procedures were embodied in several C++ programs
which we used to drive the optical system design and
analysis software package, ZEMAX, externally. We
used its raytracing and optimization capabilities to
collect a huge set of data. Figure 16 indicates the re-
lative scale of the systems we considered. The width
of the illuminating beam is constant in each case. Be-
cause of the wide range of lens parameters in which
we were interested for this study, ZEMAX had trou-
ble converging to physical solutions in all cases. Each
lens type and size, therefore, required some manual
adjustment to generate usable and repeatable data.
Nevertheless, the capability to automate the data
collection process proved invaluable in collecting
over 13,000 spot size data for further analysis.
Figure 17 presents representative spot diagrams
at different angular positions for each of the imaging
systems at a single scale and f -number. The spot size
predicted by diffraction in each case is considerably
less than the scales shown.

Plano-Convex Lenses

To achieve a desired f -number for a plano-convex
lens with a fixed diameter, we adjusted the curvature
of the front surface, the thickness of the lens, and the
distance between the lens back surface and the on-
axis focal point. We located the flat detector plane
at the paraxial focus.

With the detector plane fixed,we varied the angle of
the incident beambetween 0 and 60° in 2° increments
and, for each angle, adjusted the lens’ curvature and
thickness to maintain a constant image plane and
constant f#. We determined the spot size assuming
a flat detector plane by launching a large number
of rays from a particular field point, including the
chief ray, into the entrance pupil of the lens, and tra-
cing them through the optics to the image surface.We
calculated the spot size as the root-mean-square of the
differential distance between the location of the chief
ray and the locations of the other rays. We also calcu-
lated the diffraction spot size from Airy disk.

To determine S, we inserted these values into
Eq. (2) and, in accordance with Lohmann, assumed
the value of resolution spot size was valid across the
entire detector plane. We selected the maximum
value of S over the angles calculated.

Without changing the lens, we modified the curva-
ture of the image surface to measure the spot size on
a curved detector plane. We set the curvature of a
spherical surface such that the lens f# was main-
tained yet produced the smallest spot size for that
field angle (i.e., we determined the circle of least con-
fusion). Although the curvature is slightly different
for each field point, all surfaces intersect the optic

Fig. 16. (Color online) Optical system scaling.
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axis at the paraxial focus. The curved surface, in
effect, followed that of the Petzval surface.

Monocentric Lenses

The monocentric lens consisted of a central spherical
element and two concentric outer spherical shells, all
concentric around the same point. We specified that
all elements were made of commercial glasses and
cemented to each other. Analysis of the lens was si-
milar to that for plano-convex lens.

To determine the optimum position of the curved
image surface, we assumed it was spherical and con-
centric with the lens, and we optimized the lens per-
formance (primarily f#) only at two field points, 0°
and 60°.

We determined the geometrical spot size for inci-
dent angles ranging from 0 to 80° in 2° increments.
It was necessary to increase the range of angles for
the monocentric lenses because they reached their
maximum above 60°. Small lenses reached their
maximum space-bandwidth below 80°, but ZEMAX
did not produce stable results when we analyzed
large lenses above 80°. We therefore limited our
maximum angle for analysis to 80°.

Using raytracing, we calculated first the geometri-
cal spot size on a curved image surface. We then cal-
culated the geometrical spot size on a flat image
plane by placing the image plane at the point where
the curved plane intersected the optic axis. To
achieve the required focal length for the spherical
elements, we changed the lens f -number by adjust-
ing the lens size while keeping its aperture constant.

Luneburg Lenses

We used the Luneburg lens as the limiting case on
performance for a similarly sized monocentric lens.
We scaled the Luneburg lens to match the f -number
and aperture of a monocentric lens yet simulta-
neously provide aberration-free imaging. Because a

fully illuminated Luneburg lens is always f ∕0.5,
we had to stop down the lens to achieve f∕1. To com-
ply with Lohmann’s approach, we changed the lens f -
number by changing its lens size while keeping its
aperture size constant.

Because ZEMAX was unable to trace accurately
the off-axis rays through this type of lens, we gener-
ated most of our data for the Luneburg imaging
system by calculating the diffraction spot size nu-
merically and zeroing out the geometrical aberra-
tions generated by a monocentric lens. We used
ZEMAX to validate some of our results to insure
the performance for rays at any field angle was
equivalent to that for an on-axis ray.

We note that we did not use the Luneburg lens in a
way that provided the best possible performance in
the smallest possible volume. To do so, we could have
modified the index of the Luneburg lens to reduce
volume, but we would have been forced to use a dif-
ferent index profile for each f -number. This violated
our basic postulate not to expend considerable effort
to optimize lens performance.
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Abstract: We report results of an ongoing study designed to assess the 
ability for enhanced detection of recently buried land-mines and/or 
improvised explosive devices (IED) devices using passive long-wave 
infrared (LWIR) polarimetric imaging. Polarimetric results are presented for 
a series of field tests conducted at various locations and soil types. Well-
calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization 
(DoLP) are recorded for different line-of-sight (LOS) slant paths at varying 
distances. Results span a three-year time period in which three different 
LWIR polarimetric camera systems are used. All three polarimetric imaging 
platforms used a spinning-achromatic-retarder (SAR) design capable of 
achieving high polarimetric frame rates and good radiometric throughput 
without the loss of spatial resolution inherent in other optical designs. 
Receiver-operating-characteristic (ROC) analysis and a standardized 
contrast parameter are used to compare detectability between conventional 
LWIR thermal and polarimetric imagery. Results suggest improved 
detectability, regardless of geographic location or soil type. 
© 2012 Optical Society of America 
OCIS codes: (280.4991) Passive remote sensing; (040.2480) FLIR, forward-looking infrared; 
(110.5405) Polarimetric imaging. 
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1. Introduction 

Both military and civilian personnel are facing an ever-evolving threat from buried/concealed 
landmines and improvised explosive devices (IEDs). There has been significant research 
dedicated to the detection of buried explosive devices [1–6]. One particular technology that 
has shown promise is forward-looking ground penetrating radar (FLGPR) [7–9]. However, 
recent studies have identified several inherent problems associated with FLGPR, e.g., buried 
explosives that are formed from dielectric- or polymer-based materials (plastics) are difficult 
to detect due to the small electromagnetic (EM) radar cross-sections for non-conducting 
materials [10,11]. In addition, FLGPR systems are plagued by unacceptable false-alarm rates 
due to the detection of commonly buried debris. A consensus has emerged that two or more 
complimentary technologies will most likely be required to improve detectability while 
reducing false-alarm rates. One such complimentary approach may involve a combination of a 
FLGPR system with an optically based imaging platform capable of detecting surface 
anomalies, i.e., disturbed earth (DE), that result when explosive devices are buried/concealed 
near the surface of a given terrain. 

One suggested imaging technique for the remote detection of DE involves various forms 
of spectroscopic imaging in the thermal infrared (IR), sometimes termed multi- or hyper-
spectral imaging [12–14]. These techniques attempt to exploit the so-called “reststrahlen” 
effect, in which the bulk emissivity for a particular soil changes within 8–10μm spectral range 
due to absorption at the reststrahlen frequencies, which are approximately equal to the natural 
frequencies of certain crystalline structure associated with small semi-transparent silica-based 
particles [15–17] Although well-documented, the reststrahlen effect has been shown to be 
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quite variable depending on geographic location and soil composition. Most research shows a 
3–5% variance in the IR emissivity associated to the reststrahlen phenomena under optimal 
conditions. 

We consider a new imaging approach based on changes in polarization state associated 
with radiation that is emitted and/or reflected from a surface that has recently been altered 
[18–20]. The premise for considering polarimetric imaging is based on the fact that both 
manmade and naturally occurring terrain establishes an “average” polarization profile or 
pattern that results from vehicle traffic, weathering, or just the passage of time. Since the 
polarization state of the image forming radiation is extremely sensitive to subtle changes in
the geometry of reflecting/emitting surface, resultant differences in polarization signatures 
arise for localized surface regions that have recently been disturbed. 

For our application, we chose to use a Stokes parameter approach to describe the 
polarization state of the radiation that is emitted and/or reflected from a target area [21]. We 
apply the Stokes methodology to an imaging application where we define the Stokes “images” 
S1, S2, and S0, by the usual convention shown in Eqs. (1)–(3), 

     2S1  I 0  –  I 90  w / sr m ,  (1) 

     2S2  I   45  –  I –45  w / sr m .   (2) 

For total linear polarization, the total radiance image, S0, is defined as, 

     2S0  I 0   I 90  total radiance w / sr m ,   (3) 

and the degree-of-linear polarization (DoLP) image is expressed as, 
2 21 2DoLP ,

0
S S

S


 (4) 

where I(0), I(90), I( + 45), and I(–45) represent well-registered (spatially) images produced 
with polarimetrically filtered radiance (w/sr-m2) at orientation angles 0°, 90°, + 45°, and –45°, 
respectively, where 0° is defined as the vertical with respect to the image plane. As one can 
see from Eqs. (1)–(3), the S1 image represents a relative measure of the vertical compared to 
the horizontal component, the S2 image represents a relative measure of the difference 
between the two ± 45° diagonal states, and the S0 image is merely a conventional “intensity 
only” image.

This study represents a compilation of results spanning a three-year period. The three 
field-tests presented here were conducted in 2008, 2009, and 2011, to assess the viability for 
using passive LWIR (8-12µm) polarimetric imaging to identify regions of recently DE. The 
primary goal was threefold—1) objectively measure the ability to detect regions of disturbed 
soil associated with the placement of buried land-mines and/or IEDs; 2) assess how
detectability is effected varying soil type and composition; and 3) determine how LWIR 
polarimetric DE signatures are effected by atmospheric conditions, e.g., clear sky, cloud 
cover, rain, wind, etc. 

During the time period that this report encompasses, three different LWIR polarimetric 
imaging platforms were used, and all were produced by Polaris Sensor Technologies, Inc., 
located in Huntsville, AL. It should be noted that the use of three different LWIR polarimetric 
imagers was dictated not by choice, but rather by necessity. After an initial proof-of-concept 
study in 2008, a first-generation LWIR polarimetric imager experienced technical issues that 
delayed further study. Early in 2009, a LWIR microbolometer-based polarimetric sensor 
became available, which allowed for our work to continue. Finally, in 2010, a state-of-the-art 
LWIR polarimetric imager became available and was used in the final phase of the study. 

Although there are a variety of optical configurations appropriate for polarimetric 
imaging, (e.g., division-of-amplitude (DoA), division-of-focal-plane (DoFP), and division-of-
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aperture (DoAP)), we chose a division-of-time (DoT) approach based on a spinning 
achromatic retarder (SAR) design for recording calibrated LWIR Stokes imagery [22–26]. 
Because the DoT method relies on the capture and differencing of sequentially recorded 
images, it is only appropriate for imaging objects that are slowly moving or static within the 
scene. Although somewhat limited by the sequential nature of the recorded imagery, it is by 
far the best choice for basic research applications due to maximum radiometric throughput, 
spatial resolution, and polarimetric sensitivity. 

2. Spinning achromatic retarder (SAR) polarimetric sensors 

A spinning achromatic retarder (SAR) imaging polarimeter operates by capturing a sequence 
of images in time. Each image in the sequence is recorded at a different orientation position of 
a spinning achromatic retarder. In its principle mode of operation, the system acquires a set of 
16 images per rotation of the retarder—i.e., images are captured at 0, 22.5, 45… to 337.5°.

Fig. 1. Basic design of a spinning achromatic retarder (SAR) LWIR polarimetric imager. 

Figure 1 shows the basic design of a LWIR SAR-based imaging polarimeter in which 
either a room-temperature microbolometer, or a cryogenically cooled Mercury Cadmium 
Telluride (MCT) focal-plane-array (FPA) detector is positioned at the image-plane of the 
sensor. In general, we have found the cooled MCT-based FPAs to exhibit a noise-equivalent 
DoLP or NEDoLP (similar to NEΔT for conventional thermal) on the order of ± 0.1%, 
whereas the microbolometer-based systems typically exhibit NEDoLP values in the range of 
± 0.3-0.5%. 

For MCT-based systems, much of the optical train is held under vacuum within a Dewar 
and cooled to an approximate temperature of 88K. The achromatic retarder is mounted just 
outside the Dewar window and is mounted to a precision set of frictionless bearings. A series 
of relay optics are used to reduce any beam wander generated by the rotating optic, and by 
using this configuration pixel, registration error between sequential frames is typically less 
than 1/20th of a pixel. The retarder is rotated continuously by a stepper motor at variable 
rates, depending on the specified integration period and application. All three SAR-based 
systems used in this study are designed to record/display a user-specified set of Stokes and/or 
polarimetric image products at processing rates approaching real-time. An excellent review of 
current polarimetric imaging technologies can be found in Tyo, Goldstein, Chenault, and 
Shaw [27].

#168685 - $15.00 USD Received 17 May 2012; revised 6 Jul 2012; accepted 8 Jul 2012; published 14 Sep 2012
(C) 2012 OSA 24 September 2012 / Vol. 20,  No. 20 / OPTICS EXPRESS  22347



	  	
32

3. Detection analysis 

Perhaps one of the more difficult tasks involved with image detection analysis is developing 
an objective evaluation metric that consistently and correctly identifies the “best” image type 
for maximum detectability. Much of the difficulty arises from the fact that optimum 
detectability is so heavily dependent on the type of end-user one considers, e.g., human or 
computer algorithm. To address this, we chose to use two established image evaluation 
metrics—i.e., detection calculations based on a receiver-operational-characteristic (ROC) 
curve approach, and the more intuitive, standardized contrast parameter method. Since both 
techniques have inherent strengths and weaknesses, we present to the reader actual LWIR 
thermal and polarimetric image sets for subjective, yet sometimes more informative, 
evaluation. 

The receiver-operational-characteristic (ROC) analysis is often the tool of choice among 
researchers within the artificial intelligence (Ai) and automated-target-recognition (ATR) 
community. The ROC method was originally developed for signal detection analysis but is 
now widely applied in many different disciplines [28–30]. ROC curve analysis is used to 
compare target detectability between different image sets recorded or processed by different 
means. In order to do this, some a priori knowledge about the location of the actual target is 
necessary so that a “truth” image can be generated. Figure 2(a) shows an image histogram of 
an example truth image where the large Gaussian like curve on the left represents the pixel 
values associated with the background, and the smaller distribution on the right represents the 
pixel values associated with the target. The vertical line in the figure represents an arbitrary 
threshold point. Also shown are regions defined by the intersection of the two histograms, as 
well as regions to the right and left of the threshold line identified as true-negative (TN), true-
positive (TP), false-positive (FP), and false-negative (FN) regions. 

A ROC curve is generated by comparing the overlapping regions TN, TP, FP, and FN, as 
the threshold point is swept right to left across the histogram. Figure 2(b) shows a resultant 
ROC curve for the histograms shown in Fig. 2(a). The area under the ROC curve is defined as 
the normalized probability for detection of the target identified in the truth image. 

One inherent weakness associated with the ROC curve approach stems from the fact that it 
is a purely statistical method and fails to take into account addition spatial information 
associated with localized target pixel location and/or clustering—an important aspect of visual 
cognitive detection. The human eye can often decipherer target regions within a scene based 
on very subtle variations among clusters of pixels that form a particular distinguishable shape. 
Nevertheless, the ROC method is a readily accepted metric among Ai/ATR community and 
does offer an objective measure of target detectability. 
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Fig. 2. 2(a) A image histogram where the target (right Gaussian) and background (left 
Gaussian) regions are defined and, 2(b) the corresponding ROC curve, where the area under 
the curve is related to the probability for detection the target within the scene.

A second evaluation method for grading imagery for maximum detectability involves 
calculating a “standardized” contrast parameter [31]. At the most fundamental level, the 
ability to detect a given object within an image is heavily dependent on the magnitude of the 
difference between pixel values associated with the object and its associated background, i.e., 
contrast. However, in order to compare pixel values that result from different image types—
e.g., thermal, Stokes, DoLP, etc.—a standardization process must be applied to the entire 
image set. This is a common procedure used to normalize multivariate image sets before 
applying a particular evaluation metric. The standardization process effectively translates each 
image histogram (derived from different physical quantities) onto the same basis set of 
coordinate axes. The standardization procedure involves subtracting the mean pixel value 
derived by the entire image, and dividing the resultant histogram by the standard deviation. 
This multivariate normalization process by no means affects overall integrity and information 
content of the image. After image standardization, separate ROIs are defined for the target 
and background regions for a given image set, and the average pixel value for each region is 
computed. Finally, a standardized contrast parameter is calculated for each image and is 
defined as, 

º ,T BC ū ū (5) 

where ūT and ūB represent the average pixel values for the target and background ROIs, 
respectively. 

4. Experiment (test sites) and results 

The first test was conducted on May 22, 2008, and was located at the U.S. Army Research 
Laboratory (ARL), Adelphi, MD, on a test surface best described as a well-traveled dirt road 
consisting of a gravel-clay-soil mixture that was well-compacted. The test was conducted over 
a 6-h period during mid-afternoon under clear skies, with relative humidity approximately 
50% and temperatures varying from 77 to 81 °F. Holes were dug approximately 12 in into the 
hardened road surface and surrogate IED targets were buried at different locations, see Fig. 3. 

For this particular test, we used our lowest resolution 256 x 256 MCT FPA-based SAR
polarimetric camera system. The polarimetric imager was mounted on a tripod and positioned 
2.75 m above the ground and was focused on the DE region at an approximate distance of 10 
m away as shown in Fig. 4. A 50 mm LWIR objective lens was fitted to the polarimetric 
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sensor, which produced an effective field-of-view (FOV) of 15°. The camera LOS was angled 
to the DE region, resulting in a range of grazing angles from 15 to 20° defined by the LOS 
and the road surface. It should be noted that for this first proof-of-concept test, great care was 
taken to camouflage the disturbed region as best as possible, i.e., not readily noticeable to a 
casual observer, see Fig. 3(b). After the disturbed regions reached thermal equilibrium after 
approximately 1 h, a series of four image sets were recorded at 15-min intervals. 

Fig. 3. Photograph of DE region May 22, 2008 test conducted at U.S. Army Research 
Laboratory, Adelphi, MD site. 3(a) DE test-bed (red oval area represents buried target and 3(b) 
a close up of the DE region (clay-gravel-soil mixture). 

Fig. 4. Schematic for the initial test conducted on May 22, 2008 showing the positioning of the 
LWIR polarimetric camera with respect to the DE test region. 

Figure 5 shows the resultant imagery consisting of a conventional LWIR thermal image, 
S0, the two Stokes images, S1 and S2, and DoLP image, where a false color has been applied 
to all the original grey-scale images. Note that all Stokes image values presented here are 
normalized with respect S0, and range from –1 to 1. Table 1 shows the average absolute 
radiance and normalized Stokes values for ROIs that are defined as either the DE or 
background regions. 

Fig. 5. (a) conventional LWIR thermal image, S0, for the DE region highlighted in Fig. 3
recorded on May 22, 2008. Figures 5(b)-(d) show the resultant Stokes images S1, S2, and 
degree-of-linear-polarization (DoLP) image where the DE region is shown by an identifying 
arrow. 
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As one can see in Fig. 5(a), the ability to distinguish disturbed from undisturbed soil 
regions is quite poor for the conventional LWIR thermal image, S0, and reflected by the 
lowest calculated ROC curve value, 0.256 (Fig. 6), and the lowest contrast parameter value, 
0.056, shown in Table 2. The DE region becomes visible in the Stokes image S1 (Fig. 5b), 
where contrast arises from the fact that the DE region emits thermal radiation that is slightly 
less polarized, when compared to the surrounding undisturbed area (Table 1). Note that since 
all normalized S1 values are negative, the majority of the polarization lies in the horizontal 
plane, based on the definitions shown in Eqs. (1-2), which is associated with “emission” 
dominant polarization. Conversely, a positive S1 value implies that the vertical component is 
dominant, and the majority of the received radiance is due to “reflection” of the ambient 
optical background. 

Table 1. Average radiant and polarimetric values for DE and background ROI regions 
for images shown in Figs. 5(a)-5(d), recorded on May 22, 2008. 

May 22, 2008 Test S0 (watt/sr-m2) S1/S0 S2/S0 DoLP(%)

DE region (ROI average) 27.36 0.041 0.081 2.843

background (ROI average) 27.19 0.048 0.058 3.044

Similar evaluation of the S2 image shows further improvement in target detectability and 
is reflected by the highest calculated ROC curve and contrast parameter values of 0.958 and 
1.745, respectively. Again, since the values for the normalized S2 image shown in Table 1 are 
negative, the dominant polarization state is oriented at –45°, with respect to the vertical. In a 
scene in which the LOS to the lay of the surface is perfectly symmetric, we would expect the 
values of the S2 image to be nearly zero—i.e., ground is surface flat and level, and the region 
of interest is centered. However, due to the slope of the ground surface and the fact that the 
camera mount was off-center with respect to the DE region, a larger than normal difference 
arose between the + 45° and –45° states. Figure 5(d) shows the DoLP image, which is merely 
the normalized superposition of the Stokes images S1 and S2. A lower contrast parameter 
value of 0.993 is not unexpected since the DoLP product contains noise components from S1, 
S2, and S0, which in this case, results in a slight reduction in the overall contrast for the DoLP 
product image. 

Fig. 6. Corresponding ROC curves calculated for images shown in Figs. 5(a)–5(d), in which 
the probability of detection is defined as the integrated area under each respective curve. 
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Table 2. Comparison of the contrast parameter and ROC curve results for the image set 
shown in Figs. 5(a)-5(d), recorded on May 22, 2008. 

May 22, 2008 Test S0 S1 S2 DoLP

contrast parameter 0.056 0.790 1.745 0.993

probability of detection 0.256 0.866 0.958 0.688

A follow-on series of DE tests were conducted over a multi-day period from August 27–
September 4, 2009. The location was again the Adelphi, MD, area, which included the 
original May 22, 2008, dirt road site, as well as two new locations in which the soil 
compositions for each location is characterized as red-clay-silt mixture, and a topsoil type 
material, rich in organic material and small stone. As previously mentioned, the original 
liquid nitrogen (LN2)-cooled 256 x 256 MCT FPA SAR polarimetric sensor was unavailable 
during this period and a new 324 x 256 FPA microbolometer-based SAR polarimetric imager 
was substituted in its place. 

The first test was conducted on August 27, 2009, at a local baseball field in Adelphi, MD. 
The site was chosen due to its unique soil type similar to what is found in various regions of 
Southeast Asia, see Fig. 7(a). Once again, holes were dug and surrogate objects were buried at 
various locations at depths < 1 m. Similar to the first test conducted in 2008, each hole was 
carefully raked and brushed over to camouflage the fact that digging had occurred, see Fig. 
7(b). The microbolometer SAR polarimetric imager was set up in a similar manner as in prior 
tests, with the exception that the camera was mounted at a slightly lower to a height of 2 m 
above the ground. This resulted in a viewing angle (as defined by the LOS and the soil 
surface) that ranged from 10 to 16°, depending on the location of interest within the scene. 
Once the disturbed regions reached thermal equilibrium with the surrounding background, 
capture of polarimetric imagery began and was recorded every 15 min for approximately 4 h. 

Fig. 7. Test area recorded on August 27, 2009. 7(a) The packed red-clay-silt soil field used to 
generate the DE regions, and 7(d) the subsequent camouflage and raking of the area. 

Fig. 8. The polarimetric image set for August 27, 2009 test where the DE regions are shown by 
the identifying arrows. (a) Conventional LWIR thermal image S0; (b) Stokes image S1; (c) 
Stokes image S2; and (d) DoLP image, recorded with the microbolometer based SAR 
polarimetric sensor. 
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Figure 8 shows the resultant thermal and polarimetric image set recorded at the red-clay-
silt site on August 27, 2009. Two large DE regions are visible only in the Stokes and DoLP 
images shown in Figs. 8(b)-8(d) and are identifiable as either light regions in image, 8(b), or 
dark regions in images 8(c) and 8(d). Average thermal and polarimetric values for the 
disturbed and background ROIs are shown in Table 3. 

Review of the values shown in Table 3 again shows negative values for the normalized S1 
image, which implies that the polarization state results primarily from surface emission, rather 
than reflection of the ambient background radiation. Because the camera was well-centered 
with respect to the disturbed regions, greater symmetry was created within the scene, resulting 
in normalized S2 values that were effectively zero. As with the earlier test, the disturbed 
region was less polarized than the undisturbed background, resulting in DoLP values of 
1.00% and 1.43%, respectively. 

The results of the ROC curve and contrast parameter analysis are shown Table 4 and 
indicate that the DoLP image is ranked highest in detectability, followed closely by the S1 
image. However, issues associated with the ROC curve approach become apparent when 
considering the S2 image, which registered the lowest probability of detection with a value of 
0.312, although the DE regions are clearly visible in the S2 image, shown Fig. 8(c). 

Table 3. Average radiant and polarimetric values for the DE and background regions 
shown in Figs. 8(a)-8(b) for the red-clay-silt test site recorded on August 27, 2009. 

Aug. 27, 2009 Test
S0 (watt/sr-m2) S1/S0 S2/S0 DoLP(%)

DE region (ROI average)
16.41 0.001 0.002 1.0

background (ROI average)
15.46 0.014 0.004 1.4

Table 4. Comparison of the contrast parameter and ROC curve results for the red-clay-
soil surfaces shown in Fig. 7(a)-7(d), recorded on August 27, 2009. 

Aug. 27, 2009 Test S0 S1 S2 DoLP

contrast parameter 0.023 1.438 1.022 1.549

probability of detection 0.444 0.478 0.312 0.795

On September 3, 2009, we returned to the first test-site location of May 22, 2008, and 
repeated the measurement with the microbolometer-based SAR polarimetric sensor. This 
time, two surrogate targets were buried, and after thermal equilibrium between the DE and 
backgrounds surfaces was reached, polarimetric images sets were recorded, see Fig. 9. Note 
that the bright spots seen in the S0 image, Fig. 9(a), was a result of localized heating due to 
direct sunlight that was filtered through a series of trees located on the right side of the test 
site. 
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Fig. 9. Radiant and polarimetric imagery recorded on Sept. 3, 2009 at the original May 22, 
2008 site. 9(a) Conventional thermal LWIR image, S0, 9(b) Stokes image, S1, 9(c) Stokes 
image, S2, and 9(d) DoLP image, recorded using a microbolometer based SAR imaging 
polarimeter. 

On September 4, 2009, we chose a test location containing a topsoil mixture consisting of 
fine dirt and gravel that was “shadowed” from the afternoon sun by a large building, see Fig. 
10(a). This location was specifically chosen to assess how shadowing, as well as radiant 
loading resulting from the building, would affect the ability to polarimetrically resolve regions 
of DE. Only one surrogate target was buried for the test, and after a period of about 2 h 
(needed for thermal equilibrium to occur), recording of polarimetric imagery was started, see 
Fig. 10. 

Fig. 10. Radiant and polarimetric imagery recorded on Sept. 4, 2009 showing the effect of 
shadowing and ambient radiant loading on a DE region. Target site consisted of a topsoil 
mixture of fine dirt and gravel. (a) Conventional thermal LWIR image S0; (b) Stokes image 
S1; (c) Stokes image S2; and (d) DoLP image, recorded using the microbolometer based SAR 
imaging polarimeter. 

Table 5. Average radiant and polarimetric values for DE and background ROIs recorded 
on September 3 - 4, 2009 for the image sets shown in Figs. 9 and 10 using the LWIR 

microbolometer SAR polarimetric sensor. 

Sept. 3, 2009 Test S0 (watt/sr-m2) S1/S0 S2/S0 DoLP(%)

DE region (ROI average) 13.13 0.010 0.003 1.1

background (ROI average) 13.13 0.016 0.006 1.7

Sept. 4, 2009 Test S0 (watt/sr-m2) S1/S0 S2/S0 DoLP(%)

DE region (ROI average) 13.61 0.005 0.001 0.6

background (ROI average) 13.26 0.009 0.006 1.1

Until now, all of the studies have been short in duration—i.e., a single day—and the 
obvious question is, “How long and under what conditions will such disturbances continue to 
be detectable using a polarimetric imaging method?”

The resultant radiance and polarimetric values for the DE and background ROIs, as well 
as the corresponding detection metrics for the September 3–4, 2009, tests are shown in Tables 
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5 and 6. Review of the contrast parameter and ROC curve results shows that the degree of 
detectability for the polarimetric derived imagery is consistently greater than the conventional 
thermal image, S0. However, there is disagreement on whether the S1 or DoLP image is 
actually superior, since the September 3 contrast parameter implies the DoLP image to be 
best, while the ROC curve results for both September 3 and 4 show the S1 to be the superior 
detection image. Again, the dilemma of what is the “best” image is left to the observer, and 
after comparing the image sets shown in Figs. 9 and 10, one could make a good argument for 
either the S1 or DoLP for being the superior detection image. 

To address this issue partially, we conducted a multi-day field test that occurred over a 
five-day period spanning October 1–5, 2011. The term “partially” is used because even after a 
week in the field, in which we experienced a variety of weathering conditions including a 
series of modest rain events and monsoon type winds, many of the DE regions were still 
visible to the polarimetric sensor. 

Table 6. Comparison of the contrast parameter and ROC curve results for the DE tests 
recorded on September 3 - 4, 2009 for the image sets shown in Figs. 9 and 10 using the 

LWIR microbolometer SAR polarimetric sensor. 

Sept. 3, 2009 Test S0 S1 S2 DoLP

contrast parameter 0.082 0.775 0.744 0.913

probability of detection 0.394 0.754 0.522 0.248

Sept. 4, 2009 Test S0 S1 S2 DoLP

contrast parameter 0.0210 1.569 0.594 1.473

probability of detection 0.399 0.613 0.678 0.397

This final test was conducted in an arid southwest region of the United States located at 
the Energetic Materials Research and Testing Center (EMRTC) in Socorro, NM, where the 
soil type is characterized as loam—i.e., a soil composed of sand, silt, and clay at about 40-40-
20% concentrations respectively. For this particular study, our most sensitive LWIR MCT-
based polarimetric sensor became available. The 640 LWIR SAR Polarimetric imager, 
produced by Polaris Sensor Technologies, housed a Stirling-cooled 640x480 MCT FPA 
detector, which was provided by DRS Technologies, Inc. The system was designed for 
maximum radiometric throughput and sensitivity that results from efficient sensor design, and 
a usually wide spectral response of 7.5 to 11.1μm, for the FPA.

The final test was held in conjunction with another experiment in which a vehicle-
mounted, forward-looking-ground-penetrating-radar (FLGPR) was being evaluated. In order 
to get quasi-registered LWIR polarimetric imagery with the FLGPR system, the polarimetric 
sensor was mounted on an elevated platform located above the FLGPR transmitter/receiver. 
This resulted in the sensor being 4.5 m above the ground, as shown in Fig. 11(a). The 
polarimetric sensor-FLGPR platform was tilted downward at an angle of 24° with respect to 
the LOS and test surface. A variety of surrogate objects were buried and camouflaged by hand 
in one of three test lanes, see Figs. 11(b) and 11(c). A series of five DE regions were imaged 
every other day during the period of October 1–5, 2011, in which meteorological conditions 
varied greatly. Weather conditions for each of the three days were as follows: October 1—
clear sky, low relative humidity with a temperatures range of 69-78 °F; October 3—overcast 
with, low relative humidity, temperatures slightly cooler in the range of 65-73°F; and October 
5—ground surface damp as a result of a rain storm that occurred during the prior day and 
much cooler, with a temperature range of 50-60°F. 
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The effects of weathering are displayed in a series of images shown in Figs. 12(a)-12(c).
Each column displays a visible image, a conventional LWIR thermal image, S0, the Stokes 
image, S1, and a DoLP image for the DE target 2 (TG 2). Tabulated radiant and polarimetric 
values for all DE targets (TG) 1-5, recorded from October 1–5, 2011, as well as their 
corresponding background (BG) regions, are shown in Table 7. A similar list of tabulated 
ROC curve and contrast parameter values for the same period is shown in Table 8. 

Fig. 11. (a) The FLGPR vehicle platform in which the 640x480 SAR polarimetric sensor was 
mounted and positioned at an angle of 24 degrees with respect to the LOS and the target 
surface. (b) Shows a typical surrogate IED being buried in the arid desert soil. (c) A typical DE 
region after burial. 

Fig. 12. Typical evolution of visible, thermal, and polarimetric signatures for a DE region over 
the five day period from Oct. 1-5, 2011, where the DE region is identified by the identifying 
arrow. (a) Target 2 recorded on Oct. 1, 2011 under a clear sky condition. (b) Target 2 recorded 
on Oct. 3, 2011, during dense overcast conditions. (c) Target 2 recorded on Oct. 5, 2011, under 
light cloud cover and after a moderate rain event that occurred on Oct. 4, 20011. 
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The overall trend seen in the 2009 and 2010 studies continues, and is reflected in the 
values shown in Table 7. Specifically, 1) the polarization state for the S1 images continue to 
result from emission dominant radiance; 2) the DoLP for DE regions is always less than the 
undisturbed background surfaces; and 3) the highest ranked image type for detectability 
continued to be the S1 image, followed closely by the DoLP images. The values for the 
normalized S1 images record on October 3 (dense cloud cover) were, on average, slightly 
lower than S1values recorded on either October 1 or October 5. 

Table 7. Radiance and polarimetric values for DE targets (TG)1-5 and corresponding 
background (BG) regions. 

10/1/11 TG 1 BG 1 TG 2 BG 2 TG 3 BG 3 TG 4 BG 4 TG 5 BG 5

S0 
(W/cm2-
sr)

35.84 35.29 36.64 35.75 35.64 34.63 37.66 37.19 36.86 36.34

S1/S0 0.00
7

0.01
3

0.00
8

0.01
2

0.00
7

0.01
7

0.00
8

0.01
2

0.00
7

0.01
1

S2/S0 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

DoLP(
%) 0.67 1.35 0.81 1.15 0.71 1.77 0.84 1.25 0.71 1.11

10/3/11 TG 1 BG 1 TG 2 BG 2 TG 3 BG 3 TG 4 BG 4 TG 5 BG 5

S0
(W/cm2-
sr)

22.62 22.16 23.73 23.56 22.78 22.22 23.53 23.01 22.76 22.28

S1/S0 0.00
5

0.00
8

0.00
5

0.00
9

0.00
6

0.01
0

0.00
6

0.00
9

0.00
5

0.00
8

S2/S0 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

DoLP(
%) 0.56 0.83 0.55 0.95 0.57 1.07 0.57 0.86 0.52 0.83

10/5/11 TG 1 BG 1 TG 2 BG 2 TG 3 BG 3 TG 4 BG 4 TG 5 BG 5

S0 
(W/cm2-
sr)

23.42 23.34 22.69 23.72 21.56 21.96 21.86 22.34 22.27 22.94

S1/S0 0.01
4

0.01
8

0.01
3

0.01
8

0.01
4

0.02
3

0.01
5

0.01
8

0.01
4

0.02
1

S2/S0 0.001 0.001 0.001 0.002 0.002 0.003 0.002 0.002 0.001 0.002

DoLP(
%) 1.45 1.86 1.38 1.87 1.47 2.38 1.52 1.87 1.44 2.16

However, based on our prior experience, we would have expected even lower S1 values 
for the October 3 test data, considering the overcast conditions, which is often associated with 
large ambient radiant loading. This is because the linear polarization that occurs when 
ambient radiance is reflected from a surface is always orthogonal to the linear polarization 
that results purely from emission, and the net effect results in an overall reduction in the total 
linear polarization exhibited by the surface. This effect is most often seen in MidIR 
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polarimetry, where it is not uncommon to see the sign of various regions within an S1 image 
flip with quickly changing meteorological conditions [32].

Table 8. ROC curve and contrast parameter (CP) values for DE regions 1-5 recorded on 
Oct. 1-5, 2011. 

10/1/2011 1 ROC 1 CP 2 ROC 2 CP 3 ROC 3 CP 4 ROC 4 CP 5 ROC 5 CP

S0
0.633 0.843 0.53 0.179 0.587 1.301 0.655 0.831 0.646 0.211

S1
0.828 0.889 0.746 0.641 0.638 1.067 0.865 1.250 0.874 0.881

S2
0.494 0.045 0.48 0.119 0.476 0.248 0.399 0.307 0.431 0.232

DoLP
0.201 0.867 0.296 0.621 0.418 1.080 0.167 1.227 0.114 0.876

10/3/2011
1 ROC 1 CP 2 ROC 2 CP 3 ROC 3 CP 4 ROC 4 CP 5 ROC 5 CP

S0
0.718 0.904 0.801 1.302 0.742 0.799 0.718 0.707 0.493 0.195

S1
0.808 0.952 0.853 1.682 0.73 1.543 0.808 1.610 0.791 1.065

S2
0.495 0.013 0.439 0.472 0.551 0.050 0.495 0.209 0.543 0.102

DoLP
0.278 0.786 0.198 1.655 0.419 1.501 0.278 1.559 0.582 1.045

10/5/2011
1 ROC 1 CP 2 ROC 2 CP 3 ROC 3 CP 4 ROC 4 CP 5 ROC 5 CP

S0
0.541 0.459 0.452 0.304 0.504 0.556 0.541 0.713 0.662 0.435

S1
0.896 1.255 0.754 0.583 0.693 0.880 0.896 2.518 0.851 1.162

S2
0.489 0.311 0.53 0.066 0.519 0.045 0.489 0.427 0.432 0.331

DoLP
0.162 1.236 0.303 0.576 0.408 0.844 0.162 2.450 0.515 1.166

Perhaps the most interesting aspect of the study resulted after the rain event that occurred 
on October 4. Although not readily apparent in the image set shown in 12c, the modest 
rainfall of October 4 appeared to actually improve the contrast between the DE and 
surrounding undisturbed areas. We have always expected that after a sufficient amount of 
weathering and/or traffic has occurred, the ability to polarimetrically detect regions of 
recently disturbed soil would not be possible. However, based on these preliminary results, 
modest weathering events like blowing wind and rain may actually serve to enhance the 
effect, at least initially. In this particular case, the rain events appear to produce a net 
“smoothing” of the undisturbed regions, while the DE regions were far less affected. This is 
also reflected by the relatively large DoLP values recorded on October 5 for both the target 
(TG) and background (BG) surfaces shown in Table 7. 

5. Conclusion 

We have shown that by using passive LWIR polarimetric imaging, one can improve the 
ability to remotely detect localized regions of recently DE that is often associated with the 
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bearing of landmines and IEDs. The results stem from a series of tests conducted at a variety 
of different geographic locations with varying soil types in which three different LWIR 
polarimetric imaging platforms were used. In light of the multitude of changing parameters 
and sensors, the final results were surprisingly consistent. 

First, based on objective detection metrics used in this study—i.e., ROC curve analysis 
and standardized contrast parameter calculations—the ability to detect localized regions of 
DE was greatest for the polarimetric images S1 and DoLP. We believe the DE contrast seen in 
the Stokes images S1 is a direct result of the symmetric slant-path imaging arrangement used 
in the study. We expect for an elevated nadir type detection arrangement that the DoLP image 
would be the image type of choice for detecting regions of DE. 

Second, all measured S1 signatures were due to emission induced polarization—i.e., 
linearly polarized in the horizontal plane. As mentioned earlier, situations in which the 
ambient optical background is changing, as is the case when stratus or nimbostratus cloud-
cover is present, the sign of specific regions in the Stokes images S1 or S2 are often observed 
changing, signifying that the mechanism for generating linear polarization has switched from 
being emission to reflection dominant, or vice versa. However, observations also show that 
even during these events, the polarimetric contrast between a given target and the 
corresponding background is preserved [32] 

Finally, the polarimetric contrast necessary to distinguish DE regions from the undisturbed 
surrounding areas results from the fact that undisturbed surfaces tend to exhibit higher degrees 
of linear polarization compared to DE areas. Put more generally, polarimetric contrast 
between disturbed and undisturbed surface regions arises when symmetry of the surface is 
altered. Such symmetry may result from naturally occurring events, e.g., prolong wind and 
rain storms, or by a manmade process associated with vehicular and pedestrian travel. Once a 
soil surface is altered, very subtle, yet quite measurable, differences in the polarization state of 
the reflected or emitted radiation occurs at the boundary that defines disturbed from 
undisturbed surface areas. 

We have shown for the cases considered here a net reduction in the linear polarization for 
the DE regions (relative to the surround undisturbed regions) on the order of 20-100% or 
more. Although all of the imagery recorded involved a slant-path LOS, the authors believe the 
ability to detect regions of DE using passive LWIR polarimetric imaging would greatly 
benefit if conducted from an aerial platform. This would allow for imaging of much larger 
surface areas in which a “change-detection” method could be applied. We are currently 
planning a series of such studies using a nadir LOS where DE regions are polarimetrically 
imaged in both the MidIR and LWIR to assess the benefit for using a dual-band approach. 
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Abstract. The authors analyze properties of a 220 GHz imaging system
that uses a scanned reflectarray to perform electronic beam scanning of a
confocal imager for applications including imaging meter-sized fields of
view at 50 m standoff. Designs incorporating reflectarrays with confocal
imagers have not been examined previously at these frequencies. We
examine tradeoffs between array size, overall system size, and number
of achievable image pixels resulting in a realistic architecture capable
of meeting the needs of our application. Impacts to imaging performance
are assessed through encircled energy calculations, beam pointing accu-
racy, and examining the number and intensity of quantization lobes that
appear over the scan ranges of interest. Over the desired scan range,
arrays with 1 and 2-bit phase quantization showed similar array main
beam energy efficiencies. Two-bit phase quantization is advantageous
in terms of pointing angle error, resulting in errors of at most 15% of
the diffraction-limited beam size. However, both phase quantization
cases considered resulted in spurious returns over the scan range of
interest and other array layouts should be examined to eliminate potential
imaging artifacts. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
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1 Introduction
Detection of concealed explosives and other devices easily
masked by clothing is a significant application of passive
and active millimeter-wave/terahertz imaging systems.1

Developing methods for detection at long ranges is crucial
for effectively dealing with this threat. For applications
involving mobile targets, imaging large fields of view at
near video frame rates is needed. A common approach
implemented in state-of-the-art millimeter-wave and tera-
hertz systems uses mechanical scanners for rapid beam steer-
ing. A drawback of mechanical scanning is the associated
hardware,2 which can be physically large, heavy, and
cause vibrations. Many radar applications, unlike passive
millimeter-wave imaging, do not need the large bandwidth
provided by scanning mirrors. In this context, rapidly rotat-
ing and oscillating elements are often a hindrance. Develop-
ing electronic scanning capabilities in the millimeter-wave
and terahertz regimes avoids these downsides, which yields
robust, portable, and lightweight systems.

Phased array technology and electronic beam scanning
techniques are well developed at frequencies below 100 GHz.
Extending this technology to the upper millimeter-wave/
terahertz regime is an active area of research.3–5 Phase shif-
ters have already been demonstrated at frequencies above
200 GHz6 and low-loss transmission line structures and ter-
ahertz integrated circuits have been demonstrated at frequen-
cies beyond 600 GHz.7 Although this technology is in the
early stages of development, it is paving the way for future
high frequency phased arrays.

To the authors’ knowledge, designs incorporating reflectar-
rays with confocal reflector systems have not been explored at
frequencies as high as 220 GHz. In this work, we analyze an
architecture that uses a reflection-type phased array, or scan-
ning reflectarray, to perform electronic beam scanning of a
confocal imager to image humans at standoff distances of
50 m. This architecture is particularly useful for applications
that simultaneously require a high degree of lateral resolution
and modest bandwidth (several percent), such as radar ima-
ging. We concentrate, in particular, on characteristics of the
reflectarray that impact design, for example, its linear dimen-
sions, the number of elements, element spacing, and the num-
ber of phase quantization levels. Section 2 describes the
system architecture and the constraints on the imager that
result from our desired application. Results of a geometrical
optics analysis are presented, and the implications for electro-
nic scanning are considered. In Sec. 3, uniform lattice arrays
compatible with the imager architecture are used to analyze
properties including beam symmetry and encircled energy
as a function of scan angle and array element spacing.
Phase quantization is considered for two-dimensional (2-D)
rectangular lattice arrays, and impacts to image quality includ-
ing beam pointing error and the relative number and intensity
of quantization lobes are analyzed for arrays with 1- and 2-bit
phase shifters. A brief study of reflectarray element design and
implementation is also presented.

2 Confocal Imager

2.1 Basic Constraints

For imaging humans in meter-sized fields of view at standoff
distances of approximately 50 m, centimeter-scale lateral0091-3286/2012/$25.00 © 2012 SPIE
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resolution is desirable. However, apertures larger than 1 m
are required to achieve diffraction-limited spot sizes of
5 cm or less at frequencies below about 400 GHz. Since
many standoff imaging applications are not well suited to
bulky, heavy optics, this problem can be solved by operating
at higher frequencies (>400 GHz) with smaller apertures.
Although component technology is not well developed at
these frequencies, recent and ongoing programs5 make the
development of electronic scanning capabilities above
400 GHz an attractive consideration for future efforts.

In this work, we investigate the impact of electronic scan-
ning on system design by considering a system that operates
in the 220 GHz atmospheric window. We selected this
frequency as a compromise between aperture diameter, dif-
fraction-limited spot size, component availability, signal
attenuation, and the transmission and reflectivity character-
istics of targets. Compared with higher frequency operation,
220 GHz offers increased transmission through clothing1,8

and more mature component technology.
For our design, we chose a confocal design for its ability

to scan the output beam of a large aperture using a relatively
small scanning element. Confocal reflector systems have
been demonstrated with mechanically scanned terahertz ima-
gers9,10 for concealed weapons detection and were proposed
for use with phased arrays for satellite-based applications.11

Additionally, they can be implemented without obstructing
the primary aperture, accommodate a fully-illuminated aper-
ture for high resolution, and be scanned up to several degrees
off axis without significant vignetting of the scanned beam
by the primary. Subsequently, we refer to this as spillover.

2.2 System Architecture

Figure 1 is a schematic representation of our design along
with an equivalent simple lens model of the reflector system.
A paraboloidal feed reflector illuminates the scanning reflec-
tarray with a plane wave. The diameter of the active area of
the array is dA. The reflectarray scans the beam �θ2 over an
under-illuminated secondary reflector (element 2). The
primary and secondary reflectors, with apertures and focal
lengths of f1, D1, and f2, D2, respectively, share a common
focus and are designed so that the primary D1 is fully filled

by the array beam with negligible spillover as the beam is
scanned off axis by �θ1.

We use geometrical optics to obtain rough system dimen-
sions and properties of the elements shown in Fig. 1. As we
show, the design is sensitive to dA. Although increasing dA
narrows the width of the scanned beam in object space, it
also increases the length of the optical system. Our goal
is to design a system that meets our scanning criteria but
is moderately sized.

To balance the physical size of the system and its spatial
resolution, we set D1 ¼ 1 m. At 220 GHz, this yields a
diffraction-limited spot size of 1.66 mrad, which in turn
yields a spot size of 8.3 cm at 50 m. Because we fix the
aperture diameter of the primary to 1 m, we can control sys-
tem size by controlling its total length,

ftot ¼ sþ f2 þ f1: (1)

Although the optical design could be made more compact,
the total focal length provides a sense of its overall size.

In order to fill the primary aperture without significant
spillover as the array scans the beam off axis, element 2
maps the array aperture distribution onto the element 1 aper-
ture. From the thin lens formula, the distance s is related to
the focal lengths of the elements according to

1

f2
¼ 1

s
þ 1

f1 þ f2
: (2)

Furthermore system magnification is given by

M ¼ −ðf1 þ f2Þ
s

. (3)

Note that the image of the reflectarray is inverted in the
aperture of the primary, which indicates M is negative in
our system. Equation (3) shows that if f2 and s are fixed,
then f1 grows with magnification. Therefore, from Eq. (1)
it is obvious that the entire system grows as magnification
increases.

From an alternative definition of system magnification,

M ¼ −
D1

dA
; ¼ tan θ2

tan θ1
: (4)

We note that, for fixed D1, jMj decreases as the reflectarray
increases in size. If we assume the spacing between array
elements is fixed at λ∕2, increasing dA increases the number
of elements that contribute to a scanned beam, which
increases the beam efficiency.4 This tradeoff is reflected in
Fig. 2, which represents the relationship between reflectarray
size and both system magnification and reflectarray ele-
ments. Magnification is representative of system length,
whereas number of elements is an indication of beam quality.
In the remainder of this work, we consider reflectarray
diameters compatible with common wafer sizes from 2 inch
to 6 inch (∼5 cm to 16 cm).

In addition to illuminating the primary aperture fully, we
must ensure that element 2 is large enough to accept the
beam from the reflectarray as it scans over a range �θ2.
Thus,

D2 ≥ dA þ 2α. (5)

Fig. 1 (a) Diagram of the layout of a scanned reflect-array incorpo-
rated into a confocal reflector system. The array scans the beam
over an under-filled secondary reflector, thereby steering the beam
at the primary. The primary element is fully filled over a scan
range of �θ1. (b) An equivalent lens model of the system showing
the array and two focusing elements.
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In order to ensure small system size, we assume element 2 is
an f∕1 optic, D2 ¼ f2, which constrains dA,

dA ≤ f2½1 − 2ð1 −MÞ tan θ1�. (6)

One can rewrite Eq. (6) using Eqs. (2) through (4) to indicate
explicitly the limitations the design imposes on the scanner’s
field of view (FOV), defined by scan angle θ1,

�
1

2

�264
1 −

�
D1

f1

�

1þ D1

dA

3
75 ≥ tan θ1: (7)

Figure 3 illustrates the impact of this limitation on system
operation assuming D1 ¼ 1 m and a 50 m object distance.
If total FOV is approximately 2θ1, the largest target the
system can scan at 50 m is 100 × θ1 m for θ1 expressed
in radians. We plot target extent in Fig. 3 as a function of
array diameter with system f-number, fsys, as a parameter,
where

fsys ¼ ftot∕D1: (8)

The upper left portion of the plot corresponds to an
unphysical system space where the desired target region
exceeds the maximum achievable scan angle. The right, ver-
tical axis refers to the number of pixels in an image for a
given target extent, if a pixel is defined at every half beam-
width. Note that, at small array diameters, system size (indi-
cated by fsys) increases rapidly with field of view. For a fixed
system size, mapping large fields of view requires large array
diameters. It is worth noting that tripling the array diameter
yields only a modest increase in FOV, roughly double,
whereas, from Fig. 2, the complexity of the array increases
exponentially with the number of elements.

Because each sample within the FOV requires a minimum
integration time to ensure low noise detection, our desire to

generate images at 30 Hz frame rates also imposes limits on
the FOV. Figure 3, therefore, also indicates the number of
samples the system generates within the target region assum-
ing an 8.3 cm beamwidth and half beamwidth sampling. If
we assume a 30 Hz frame rate, a 1 m diffraction-limited pri-
mary aperture, and a 2 m target region, the maximum inte-
gration time per sample is 15 μs. The position update rates of
phase shifters used to scan the array limit the field of view
and, given that 10 μs switch times have been demonstrated at
microwave frequencies with variable microelectromechani-
cal system (MEMS) capacitors,12 an FOV corresponding
to a 3 m target extent is the limit at which images can be
captured at 30 Hz frame rates.

Based on our analysis, we adopt a 3-inch-diameter reflec-
tarray design. Table 1 provides an overview of system details
assuming dA ¼ 7.5 cm (3 inches), D1 ¼ 1 m, and a maxi-
mum desired steering angle of θ1 ¼ �1 deg . This yields
M ¼ 13, fsys ¼ 2.3, and an array size of approximately N ¼
6000 elements (assuming half wavelength spacing). From
Table 1, the overall size of the 220 GHz system is at the
edge of what may be considered portable. However, a benefit
of the design is its potential to be scaled for higher frequency
operation. For example, a system operating at 410 GHz
with D1 ¼ 0.53 m achieves a similar diffraction-limited
spot size to the one shown in Table 1. If the array diameter
and desired total scan angle remain the same, (dA ¼ 7.5 cm
and θ1 ¼ �1 deg) then M ¼ 6.6, ftot ¼ 90 cm, and
ftot∕D1 ¼ 1.8 for the 410 GHz system.

3 2-D Array Architecture

3.1 Uniform Arrays: Size and Element Spacing
Effects

In this section we consider the properties of the far-field
pattern generated by uniform rectangular lattice arrays
whose size and element spacing are compatible with the
confocal reflector system described in Sec. 2.2. To do so,
we generate the complex wave-amplitude of the far-field pat-
tern AFðθ;ϕÞ, referred to as the array factor, for different
scan angles and array layouts. For an N ¼ A × B element
array with dx and dy element spacing along orthogonal
array axes, the array factor is given by:13

Fig. 2 System magnification and reflectarray elements as a function
of reflectarray size expressed in inches and in cm. Magnification is
representative of system length, whereas number of elements is
an indication of beam quality. This highlights the tradeoff between
overall system size and array complexity.

Fig. 3 Plot of field of regard (expressed as both target size and num-
ber of half-beamwidth image pixels) as a function of reflectarray size
for various system f -numbers, ðf 1 þ f 2 þ sÞ∕D1 calculated for a range
of 50 m and D1 ¼ 1 m.
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AFðθ;ϕÞ ¼
XA
a−1

exp½jða − 1Þkdx sin θ cos ϕ − αx;a�

·
XA
b−1

exp½jðb − 1Þkdy sin θ sin ϕ − αy;b�;

αx;a ¼ ða − 1Þkdx sin θ0 cos ϕ0 and

αy;b ¼ ðb − 1Þkdx sin θ0 sin ϕ0; (9)

where ax;a and ay;b are the phase values for each element
given a desired steering angle ðθ0;ϕ0Þ in the plane of the
reflectarray.

In our analysis, we consider arrays with uniform spacing
λ∕2 or larger. Antenna structures and the physical size of
high frequency phase shifters3,6,14 make half-wavelength
spacing difficult to achieve. We assume the arrays consist
of identical elements with equal amplitudes and, initially,
continuous phase. We consider the effects of phase quantiza-
tion in Sec. 3.2.

Table 2 shows properties of arrays with different element
spacings, scan angles, and sizes compatible with fabrication
on 2-inch, 3-inch, and 6-inch wafers. All arrays shown can
be used with the confocal reflector system in Sec. 2.2. The
designs in rows 5 to 7 of Table 2 are consistent with the sys-
tem described in Table 1. Pattern properties, including full-
width half-max (FWHM) values of array main beams, were
determined from two-dimensional Gaussian functions fit to
the far-field power pattern jAFðθ;ϕÞj2. We found the best fit
by minimizing the sum of the squares of the errors between

the generated pattern and the Gaussian functions iteratively.
The pattern properties extracted from Gaussian fits to the
main beam yield far-field characteristics that match those
predicted by analytical formulae. For example, consider
the data presented in the first two rows of Table 2. As
expected, for a square array of equally spaced elements,
the fitted orthogonal beamwidths for the broadside array
(row 1) are the same. Also, as the beam is steered off broad-
side to 15 deg, the fitted width in the dimension parallel to
ϕ ¼ ϕ0 ¼ 0 deg grows as sec θ0, while the width in the per-
pendicular dimension is unaffected. Comparing the far-field
beamwidths from the numerical calculation with the results
from analytic expressions that are valid for large uniform
rectangular arrays whose maxima are not steered far from
broadside13 reveals <3% difference between the FWHM
values.

For uniform arrays with element spacings greater than
λ∕2, the main beam FWHM characteristics are largely unaf-
fected by element spacing for a given scan angle since each
array configuration occupies the same physical area.
Encircled energy calculations are sensitive to array element
spacing and provide a quantitative way of assessing the
impact of grating lobes and scan angle error on beam
characteristics.

The encircled energy was calculated by dividing the total
energy contained within the FWHM due to the array by
the total energy expected for a solid reflector, Ea∕Es, of
the same size. The FWHM of the beam pattern due to the
solid reflector is calculated as a normalized, Gaussian
function fit to the Airy pattern:

Table 1 Details of a confocal reflector system incorporating a ∼3-inch diameter reflection-type phased array including approximate sizes and focal
lengths of optical elements, system magnification, and desired scan angles.

dA (cm) s (cm) θ2 (deg) D2 (cm) f 2 (cm) f 1 (cm) D1 (cm) M (unitless) θ1 (deg) Target (m)

7.5 16 13 15 15 200 100 13 1 1.7

Table 2 The properties of different uniform arrays are shown for rectangular lattice arrays with various layouts. Properties were calculated by fitting
Gaussian functions to the array patterns. E is the percentage of energy contained within an angular range equal to the FWHM of F theory.

dA (cm) size (M × N) spacing (λ0) θ0 (deg) FWHM (deg) E (%)

3.6 51 × 51 0.5 0 [1.96, 1.96] 97

3.6 51 × 51 0.5 15 [2.00, 1.94] 90

3.6 36 × 36 0.7 15 [2.03, 1.96] 88

3.6 25 × 25 1.0 15 [2.05, 1.98] 46

5.4 78 × 78 0.5 15 [1.31, 1.27] 90

5.4 55 × 55 0.7 15 [1.33, 1.28] 89

5.4 39 × 39 1.0 15 [1.31, 1.27] 43

10.8 155 × 155 0.5 15 [0.66, 0.64] 91

10.8 110 × 110 0.7 15 [0.66, 0.64] 91

10.8 77 × 77 1.0 15 [0.66, 0.64] 52
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Ftheoryðx; yÞ ¼ exp

�
−ðx − x0Þ2∕2σ2x þ ðy − y0Þ2∕2σ2y

�

σx ¼ 1.028λ0∕ðdA cos θ0Þ and σy ¼ 1.028λ0∕dA;
(10)

where the pattern widths are given by 1.028λ0∕D and D ¼
dA cos θ0 is the projected array diameter. The results are
shown in Table 2 and Fig. 4 where encircled energy is plotted
as a function of angular radius for array layouts shown in
Table 2 rows 5 to 7 for 15 deg scan angles. From Fig. 4
it is clear that arrays with smaller element spacing rapidly
approach 90% encircled energy as angle increases. However,
for the array with element spacing, only about 40% of the
total energy is contained within the FWHM of Ftheory due
to grating lobes. This is also reflected in the results
shown in Table 2 for all layouts with λ0 element spacing;
about 50% or less energy is contained within a small angular
radius of the main beam.

Since grating lobes can contain a large fraction of the total
power, this limits the spacing of array elements to <λ0. The
results show that 0.7λ0 spacing is quite comparable to 0.5λ0
and a good option. Having a significant fraction of power
located in grating lobes is detrimental to the system effi-
ciency since the gain of the main beam and the energy
coupled into the optical system are reduced. Even more pro-
blematic is the increased level of image clutter that can arise
if unwanted lobes propagate through the optical system. The
reflectivity characteristics of terrestrial scenes at millimeter-
wave frequencies can vary by greater than 20 dB, and false
returns may be confused with those of the main beam. This
problem, including the number and intensity of such lobes is
explored further for our optical system in the next section.

3.2 Element Phase Quantization

3.2.1 Continuous phase shift

The previous section assumes a continuous phase shift is
applied across the array to achieve beam scanning. The
amount of phase shift between elements needed to steer

the main beam of a uniform array over a given angular
range is determined by the array geometry and the operating
wavelength. The progressive phase shift required to achieve
a particular scan angle is:

δshift ¼
2π

λ0
d cosð90 − θ2Þ; (11)

where d is the element separation and λ0 is the operating
wavelength. For large arrays with uniform spacing of
order λ0∕2 or more, each element must be capable of
360 deg of phase shift. The maximum required progressive
phase shift between elements to cover the full field of view is
about 40 deg. Scanning the beam over this field of view in
half-beamwidth increments requires a minimal progressive
phase shift of about 2 deg. This implies that an eight-bit
phase shifter is required.

Phase shifters with a 360 deg tuning range and an
accuracy and reproducibility of 2 deg have not been demon-
strated at 220 GHz. Also, developing digital phase shifters
with seven to eightbits is prohibitive at these frequencies
due to overall unit cell size and the complexity of bias
routing, among other considerations. At frequencies around
200 GHz, several phase shifter designs have been success-
fully demonstrated. For example, phase shifters using
GaAs Schottky varactor diodes integrated with 90 deg hybrid
microstrip circuits exhibited 180 deg of phase shift with
errors of �15 deg over a 195 to 250 GHz frequency
range.15 Also, distributed MEMS transmission lines have
been demonstrated at G-band (140 to 220 GHz), including
4- and 15-element designs based on switched MEMS capa-
citors,6 and single-bit switched-line phase shifters have
been proposed for 600 GHz operation.3 Achieving beam
scanning via continuous progressive phase shift is not prac-
tical given the stringent requirements on total tunable range
and accuracy mentioned above. For this reason, the rest of
this section explores properties of arrays with quantized
phase shift capabilities.

Fig. 4 (a) Encircled energy calculations for similar array layouts containing different element spacings are shown for a desired scan angle of
15 deg. Two best case curves are presented as Gaussian fits to both the Airy pattern of a solid reflector (Gaussian Theory) and array factor
power pattern (Gaussian Fit). (b) A zoomed version of (a) showing the same encircled energy curves along with the results of fitted and theoretical
Gaussian curves. For all layouts except the one with λ0 element spacing, the encircled energy rapidly approaches >90% levels within small angular
radii.
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3.2.2 2-D rectangular lattice array with quantized phase
shift

Using Eq. (9) phase quantization is applied by replacing the
ideal phases with quantized phase states, αq;a and αq;a, that
are multiples of 2π∕2l mod 2π, where l is the number of bits.
As an example, Fig. 5 shows the phase shifts needed for the
78 × 78 element half-wavelength spaced array in Table 2
(see row 5) to achieve an arbitrary scan angle of
ðθ0;ϕ0Þ ¼ ð7 deg; 5 degÞ. Phase shift is shown as a func-
tion of array element number for continuous ideal phase
shift and for one to three bit phase quantization. The result-
ing array factors are shown in Fig. 6 for arrays with one to
three bit phase shifters. The array factors are normalized to
the peak intensity values and are plotted in direction cosines.
The grayscale range has been restricted to bring out lower
level structure in the images, highlighting features at the
−10 to −20 dB level.

The most important feature in Fig. 6 is the appearance of
quantization lobes, which occur in antenna arrays or diffrac-
tive optical elements with finite phase quantization.16–18 The
quantization lobes are most significant, in terms of quantity
and magnitude, for the array with one-bit phase quantization.
For the one-bit case, three quantization lobes with equal
amplitude to the main beam appear, symmetric about broad-
side. Quantization lobes also appear in array factors with
two-bit and three-bit phase shifters, but their significance

decreases as the number of quantization levels increases.
These lobes are weaker for a reflectarray illuminated by a
spherical wave front compared with a focusing feed reflector.

Quantization lobes affect system performance in several
ways, resulting in scan angle errors and decreased main
beam directivity. Additionally, quantization lobes are clearly
harmful if they are in close angular proximity to the main
beam and can therefore propagate through the optical sys-
tem. Their effects on the imaging performance of the system
presented in Sec. 2.2 will be discussed in terms of beam
pointing accuracy, the number and intensity of lobes appear-
ing over the entire desired scan region, and their impact on
the fraction of total energy contained within the main beam
as a function of scan angle.

The remainder of this section compares the relative ima-
ging performance of the system described in Sec. 2.2 with a
half-wavelength spaced, 3-inch diameter array with one- and
two-bit phase quantization. The decision to focus on one-
and two-bit phase quantization is based on a desire to mini-
mize fabrication complexity of the reflectarray. This is
particularly important for large half-wavelength spaced
arrays where minimization of unit cell area is highly bene-
ficial. For example, the 5.4 cm 78 × 78 element array shown
in Table 2 requires more than 6000 elements for a one-bit
phase shifter design. Since even the simplest unit cell
designs, such as switched line phase shifters, can require
many switches to realize 2b phase states where b is the

Fig. 5 Phase needed to achieve a desired scan angle of ðθ0;ϕ0Þ ¼ ð7 deg; 5 degÞ is shown as a function of element number across a 78 × 78
element half-wavelength spaced array for different phase quantization cases up to three bits.

Fig. 6 Plot of the array factors for arrays with one- to three-bit phase quantization shown in Fig. 5. The array factors have been normalized to the
peak intensity of the main lobes and are shown plotted in direction cosines.

Optical Engineering 091611-6 September 2012/Vol. 51(9)

Hedden, Dietlein, and Wikner: Design of 220 GHz electronically scanned reflectarrays : : :

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/05/2013 Terms of Use: http://spiedl.org/terms



	  	
52

number of bits, the feasibility of bias routing quickly
becomes a significant concern along with overall array com-
plexity. The physical size of phase shifting elements is an
additional hurdle that makes it difficult to implement
multi-bit phase shifters while maintaining half-wavelength
spacing. For this reason, we choose to examine tradeoffs
between systems with one- and two-bit phase quantization.

3.2.3 Beam pointing accuracy

The introduction of phase quantization leads to beam point-
ing errors resulting from array phase error. This error is most
severe for scan angles near broadside where the change
between phase states is large and for angles with an integer
number of elements per phase step. Studies of one-
dimensional (1-D) arrays reveal scan errors ranging from
a few tenths to a few thousandths of a degree depending
on array size, number of elements, and number of bits.19

We analyze the effects of beam pointing error for the system
described in Sec. 2.2 with a half-wavelength spaced 78 × 78
element array (Table 2, row 5) and examine the magnitude of
this error with one- and two-bit phase quantization over the
desired scan range of the optical system.

To evaluate beam pointing accuracy, array factors were
calculated for arrays with one- and two-bit phase quantiza-
tion using Eq. (9) over all scan angles ðθ0;ϕ0Þ covering azi-
muth and elevation ranges compatible with the optical design
shown in Table 1. Az/El scan angles of �13 deg (for a total
of 26 deg) are needed at the secondary to map the desired
field of view. We assume a minimum scan angle increment
of 0.65 deg on the secondary. The 26 deg scan region in
Az/El was divided into individual desired pointing angles
(Az0, El0) based on the minimum scan angle increment,
and array factors were generated for each location. For all
scan angles, array factors were generated over a finely
meshed grid with angular spacing much smaller than the
minimum scan angle in regions surrounding the expected
location of the main lobe. The beam pointing error (Δp)
was determined by the magnitude of the difference
between the desired scan angle (Az0, El0) and the location

of the array factor maximum peak (Azpeak, Elpeak): Δp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAz0 − AzpeakÞ2 þ ðEl0 − ElpeakÞ2

q
.

The results are shown in Fig. 7 with the magnitude of
beam pointing error plotted as a grayscale image over the
total Az/El region for arrays that differ only in their phase
quantization. The range of beam pointing error shown in
the figure has been clipped at 0.3 deg to highlight lower-
level detail; for comparison purposes both panels of
Fig. 7 have been plotted with this intensity scale. Several fea-
tures are apparent in the plots. The relatively large errors
observed around the origin and in stripes near the plot
axes and at �15 deg elevation are due to large changes
in phase states. The differences between achieved and
desired scan angles are particularly large for angles that
are nearly on-axis for the one-bit phase shifter case,
where the phase states abruptly change by π. This error
also appears to a lesser degree in the two-bit phase shifter
plot. The average and median scan angle errors over the
entire regions are shown in Fig. 7, (0.07, 0.05 deg) and
(0.04, 0.03 deg) for both cases, respectively. However, as
highlighted in the plot, there are regions where the scan
angle error is much greater, and the maximum error levels
for the one- and two-bit phase quantization cases are 0.6
and 0.2 deg, respectively. This is a significant fraction of
the required minimum scan angle increment of 0.65 deg.

The result is that for the one-bit phase shifter case, a
restricted scan range is needed in order to avoid these
regions. For example, scanning in the þAz∕þ El quadrant
away from the origin and axes leads to maximum pixel mis-
registration levels of less than 0.3 deg. Beam pointing accu-
racy with an array that has two-bit phase quantization
alleviates pointing error issues even further. Regions with
the largest scan angle errors result in pointing errors of
about 15% of the diffraction-limited resolution. In this
case, no restriction of scan range is necessary, enabling
more flexibility in the optical system design if needed.

3.2.4 Effects of quantization lobes

Another problem associated with phase quantization that
results in degraded imaging performance is the appearance

Fig. 7 (a) The magnitude of steering angle error in degrees for an array with one-bit phase quantization is shown as a function of scan ranges of
interest for our optical system. (b) Shows steering angle error as a function of scan angle for the two-bit phase quantization case. For comparison
purposes, the plot range matches the results of (a).
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of quantization lobes in close angular proximity to the main
beam. If these lobes are not spatially blocked and propagate
through the optical system, they can cause false returns and
introduce artifacts. This problem is compounded for applica-
tions involving imaging of moving targets at high frame rates
where the scene may be rapidly changing from frame to
frame. If one assumes that energy outside of the desired
angular scan region is terminated in an absorptive load,
the optical system presented in Sec. 2.2 will perform
some spatial filtering. This is particularly important for
scanned arrays with one-bit phase quantization, where quan-
tization lobes including ones of equal intensity to the main
beam appear symmetrically about the origin in Az/El (see
Fig. 6). However, this does not address the appearance of
quantization lobes within the desired Az/El scan region.
For this reason, we compare characteristics of arrays with
one- and two-bit phase quantization in terms of their effects
on the imaging performance of the optical system shown in
Table 1. This work examines the angular location, number,
and intensity of quantization lobes calculated over the scan
range of interest for these particular setups.

Figure 6 displays the angular locations of quantization
lobes for a 78 × 78 element half-wavelength spaced square
lattice array for one particular scan angle. To assess the
impact of quantization lobes over the total desired scan
region, array factors were generated in a manner similar
to the previous section for scan angle increments of
0.65 deg over a total scan region including 0 to 26 deg in
þAz∕þ El. The fraction of energy contained inside the
main beam was calculated and used to determine the impact
of quantization lobes. Individual summed energy results
were normalized to the total energy calculated over the
whole mapped region for each array factor. The angular
radius of the main beam was determined by the diffraction
limited 1∕e2 radius of a theoretical Gaussian due to the array
Eq. (10) calculated for each desired scan angle.

Using this method, the fraction of energy in the main
beam was computed over all scan angles in the þAz∕þ El

quadrant for the one- and two-bit phase quantization cases.
The beam efficiency results are shown in Fig. 8 as a function
of pointing angle. The grayscale range has been restricted to
highlight energy fractions between 10% and 50%. There is
comparatively little structure in the plots near the origin
where the energy fraction is the greatest (>70%). The aver-
age fraction of energy in the main beam for arrays with both
one- and two-bit phase shifters is small, about 20% and 23%,
respectively, ignoring energy lost to other quadrants. It is evi-
dent that the impact of quantization lobes and side lobes on
the main beam energy fraction is significant. There is an
additional 25% efficiency inherent to one-bit phase quanti-
zation since this plot neglects the radiated energy appearing
symmetrically about the Az/El origin (see Fig. 6). Although
this decreases the energy efficiency, it is not an insurmoun-
table problem as long as enough source power is available to
the radar imaging system and the other quadrants are
spatially filtered.

The array main beam energy efficiency results do not pro-
vide direct information about the number and intensity of the
lobes. To this end, we used the same array factors generated
over the þAz∕þ El scan region to calculate the number of
quantization lobes appearing over the scan range of interest
as a function of lobe intensity. To perform this calculation,
we set a peak threshold relative to the main beam of −20 dB.
All lobes at and above this threshold were tabulated in bins of
1 dB for each array factor. The results were summed by bin
and normalized by the total number of array factors calcu-
lated. Figure 9 shows a histogram of the results for arrays
with one- and two-bit phase shifters.

As expected, the total number of lobes/AF summed across
all bins is greater for one-bit phase quantization. Generally,
for the two-bit phase quantization case, there are fewer over-
all lobes, including those of comparable intensity to the main
beam (this is seen down to the −6 dB level). For the one- and
two-bit phase quantization cases, the total number of lobes/
AF appearing over the scanned region down to the −20 dB
level is about 60 and 50, respectively. Most of these lobes

Fig. 8 (a) The fraction of energy contained within the main beam is shown over the desired Az/El scan range for an array with one-bit phase
quantization. The average energy fraction is <20%. (b) Shows the energy fraction within the main beam for the two-bit phase quantization
case calculated over the same scan region. The average energy fraction is about 25% and for easy comparison; the plot range matches the
results of (a).
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appear at lower intensity levels. For example, considering
lobes ranging between 0 dB and −15 dB reduces both of
these numbers by more than half to about 20 lobes total.

As shown in Fig. 9, a significant number of lobes appear
above the −20 dB threshold over the total desired scan
region. These lobes are potentially harmful since they pro-
pagate through the optical system and can result in spurious
returns. As discussed above, they are less severe in terms of
number and intensity for the array with two-bit phase shif-
ters, but they are prevalent. In order to mitigate or eliminate
the possibility of false returns and irreparable imaging arti-
facts, it may be advantageous to consider alternatives. Since
larger arrays and arrays with more phase quantization states
add considerably to overall complexity, contributing to
future fabrication difficulties, examining the performance
of other array geometries, such as aperiodic arrays, may
provide better results.

3.3 Reflectarray Elements

3.3.1 Antennas

Antenna elements compatible with large scanning reflectar-
rays must meet several criteria. They need to be compatible
with wafer scale assembly and phase shifter integration.
They must also be compatible with unit cell separations
less than λ0 and incorporation into large-format 2-D arrays
with low mutual coupling. At lower frequencies up to
60 GHz, reconfigurable reflectarrays have been proposed
and demonstrated with microstrip patches,20–22 although a
variety of planar antenna elements including dipoles, copla-
nar waveguide (CPW), and slot antennas may also suffice. In
the high frequency millimeter-wave region, suitable antenna
element choices are more limited. At frequencies higher than
120 GHz, the small widths required for slot antennas and
CPWmake physical implementation of these structures chal-
lenging.3 Planar dipoles are a possibility but may not be com-
patible with common phase shifter geometries, including
MEMS switches. On the other hand, microstrip patches
meet all of the criteria and are a favorable choice for imple-
menting a scanned 220 GHz reflectarray.

3.3.2 Element integration

Adopting a simple element structure is important for large
array construction, particularly since integration of antennas
with phase shifters has not yet been demonstrated at frequen-
cies as high as 220 GHz. A possible unit cell configuration
that has been implemented at 60 GHz21 and proposed for use
at frequencies as high as 600 GHz3 uses a microstrip patch
antenna connected to a short-circuited stub that is loaded
with either a diode or MEMS switch. The switch or diode
acts as a one-bit phase shifter, providing either an open or
short impedance, and results in a 180 deg phase shift
between the two states. This simple geometry is promising
for realizing 220 GHz unit cells, although the size of phase
shifters and MEMS switches is a concern4 at these frequen-
cies. Their dimensions can be comparable to patch antennas
and viable unit cell designs must minimize the possibility of
radio frequency (RF) signal coupling to phase shifters. Digi-
tal control is a key capability for a large array. Unit cell
designs incorporating electronically controlled components
are therefore advantageous. G-band MEMS-based varactors
and switched capacitors have been demonstrated with digital
control,6 providing a path to realizing array unit cells. An
added benefit of these components for large arrays is the
use of fabrication techniques that are compatible with
CMOS processes and large-volume production methods.

4 Conclusions
In this work we analyze the performance of a system that
uses a scanning reflectarray, or reflection-type phased
array, to perform electronic scanning of a confocal reflector
system for applications including video-rate imaging of
meter-sized targets at standoff distances of 50 m. This
work analyzes a system design for operation in the
220 GHz atmospheric window. Designs incorporating reflec-
tarrays with confocal imagers have not previously been
explored at this frequency range. The 220 GHz window
was chosen as a favorable compromise between aperture dia-
meter, resolution, component availability, signal attenuation,
and transmissivity/reflectivity properties of targets. Details
of the design are presented in this work. A confocal reflector
system was chosen mainly for its ability to scan a large aper-
ture with a much smaller scanning element. This is particu-
larly attractive since large-format electronically scanned
arrays have not been demonstrated at these frequencies. A
1 m primary aperture was selected as a tradeoff between sys-
tem size and resolution. A 3-inch wafer-scale array was cho-
sen based on compromises between system size, total array
elements required, and achievable number of image pixels.
Properties of uniform rectangular lattice arrays of different
sizes and element spacings compatible with the confocal
reflector system were examined. Encircled energy calcula-
tions revealed that grating lobes can contain large fractions
of the total energy (>50%) over the angular scan ranges of
interest for arrays with element spacings near λ0. Other array
geometries that would result in lower grating lobe levels
should be considered if element spacing near λ0∕2 is unac-
hievable. Effects of array element phase quantization were
considered since achieving continuous phase shift capabil-
ities compatible with the demands of our application
(360 deg total phase shift with 2 deg precision) is impracti-
cal. Properties of 2-D rectangular arrays with one- and
two-bit phase shifters and their impacts on the imaging

Fig. 9 Histograms of the number of quantization lobes normalized to
the total number of array factors calculated over the scan range of
interest are shown binned by lobe amplitude relative to the main
beam. Results are shown for one- and two-bit phase quantization
cases.
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performance of our system were examined. The choice to
focus on one- and two-bit phase quantization was a result
of our desire to minimize the complexity of the array for fab-
rication. Beam pointing error was examined over scan ranges
of interest for our optical system. For the one-bit phase quan-
tization case, large scan angle errors were encountered,
exceeding 25% of the diffraction-limited resolution at the
worst locations. Two-bit phase quantization was better,
resulting in pointing angle errors of at most 15% of the
spot size. As a method of assessing the impact of quantiza-
tion lobes as a function of scan angle, array main beam effi-
ciency was calculated over the scan range of interest. The
average energy fraction in the main beam was comparable
for the one- and two-bit phase quantization cases when nor-
malized to the total energy over the þAz∕þ El scanned
quadrant. The number and intensity of quantization lobes
appearing over the desired scan range was examined. For
both the one and two-bit phase quantization cases, a signifi-
cant number of lobes appeared at intensity levels above the
−20 dB threshold. These lobes are potentially harmful to our
imaging system since they propagate through the optical sys-
tem and may compete with the main beam, producing arti-
facts and false returns. In order to mitigate these problems,
other array geometries will be considered in the future.
Design and integration of reflectarray elements was briefly
considered. Based on currently demonstrated component
technology and a desire to simplify element layout, unit
cells incorporating patch antennas and one-bit digitally
controlled phase shifters are favorable for G-band array
implementation.
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Samples of HgCdSe alloys were grown via molecular beam epitaxy on thick ZnTe buffer layers on Si

substrates. Two Se sources were used: an effusion cell loaded with 5N source material that produced

a predominantly Se6 beam and a cracker loaded with 6N material that could produce a predominantly

Se2 beam. The background electron concentration in as-grown samples was significantly reduced by

switching to the Se cracker source, going from 1017–1018 cm�3 to 3–5� 1016 cm�3 at 12K. The

concentration remained low even when the cracking zone temperature was lowered to produce a

predominantly Se6 beam, which strongly suggests that a major source of donor defects is impurities

from the Se source material rather than Se species. Secondary ion mass spectroscopy was performed.

Likely donors such as F, Br, and Cl were detected at the ZnTe interface while C, O, and Si were

found at the interface and in the top 1.5lm from the surface in all samples measured. The electron

concentration for all samples increased when annealed in a Cd or Hg overpressure and decreased

when annealed under Se. This suggests the presence of native defects such as vacancies and

interstitials in addition to impurities. Overall, by switching to higher purity Se material and then

annealing under Se overpressures, the background electron concentration was reduced by an order of

magnitude, with the lowest value achieved being 9.4� 1015 cm�3 at 12K.VC 2013 American Vacuum
Society. [http://dx.doi.org/10.1116/1.4798651]

I. INTRODUCTION

Currently, the infrared material of choice is mercury cad-

mium telluride (MCT). MCT is a ternary alloy with a

bandgap that can be tuned from the short wave infrared

(SWIR) to the very long wave infrared (VLWIR). High qual-

ity MCT can be grown via molecular beam epitaxy (MBE)

on bulk lattice-matched cadmium zinc telluride (CZT), with

dislocation densities �105 cm�2. However, bulk CZT has a

maximum area of roughly 50 cm2, making it unsuitable for

the manufacture of a large area focal plane array (FPA).

MCT can also be grown by MBE on silicon (Si) with a cad-

mium telluride (CdTe) buffer layer. Si wafers are available

in diameters at least as large as 10 in., but the 19% lattice

mismatch between MCT and Si results in large dislocation

densities that limit device performance, particularly for long

wave infrared (LWIR) MCT.1

An alternative material is mercury cadmium selenide

(MCS). Like MCT, MCS is a ternary alloy with a bandgap

tunable from the SWIR to the VLWIR. MCS belongs to a

family of materials with lattice parameters near 6.1 Å. GaSb,

another member of this family, is now available in wafers

with a diameter of 4 in., with 6 in. diameter GaSb wafers

currently under development. Additionally, this 6.1 Å family

also includes materials with band gaps suitable for detection

applications in the visible and ultraviolet spectral ranges.

Therefore, one could conceivably create a device made from

lattice-matched materials capable of sensing from the ultra-

violet to the VLWIR on a single chip.2

One obstacle to the use of MCS for devices has been the

large background electron concentration that has been

reported for this material. Despite not being intentionally

doped, MCS samples typically had electron concentrations

greater than 1017 cm�3 at 77K whether in the form of bulk

samples3 or of epitaxial layers deposited by MBE.4 The elec-

tron concentration remained high with little variation even at

temperatures as low as 4K, suggesting the presence of a

shallow donor level located near or within the conduction

band. The background concentration could either be reduced

or increased by annealing under various conditions, suggest-

ing the presence of native defects such as vacancies and

interstitials.5 Sources of these donor defects need to be iden-

tified so that a process to eliminate them either during

growth or through postgrowth annealing can be developed.

II. EXPERIMENT

MCS samples were grown via MBE on Si substrates with

zinc telluride (ZnTe) buffer layers.6 The samples were

grown in an ultrahigh vacuum MBE chamber made by DCA

Instruments. The substrates were mounted on molybdenum

blocks with colloidal graphite. Immediately prior to loading,

the ZnTe/Si substrates were etched in a 0.2% Br:Methanol

solution for 30 s followed by a brief methanol rinse, a 10 s

etch in 10% HCl, a 60 s rinse in deionized water, and then

blown dry with N2. Once loaded, the substrate was heated

under a Te overpressure while monitored in situ by reflection

high energy electron diffraction to remove any remaining

oxides prior to growth. Clips held the edges of each sub-

strate, and the thickness (and therefore the growth rate) ofa)Electronic mail: Kevin.doyle.30.ctr@mail.mil
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each sample could be determined by measuring the “step”

created by the clip with a profilometer.

MCS samples were grown using elemental mercury (Hg),

cadmium (Cd), and selenium (Se) sources. The beam equiva-

lent pressure (BEP) emanating from all sources was meas-

ured with a beam flux monitor (BFM) consisting of a nude

ion gauge placed directly in the path of flux. Quadruple dis-

tilled Hg was supplied by a 600cc valved effusion cell and

Cd with 99.999% (5N) purity was supplied by a 400g

SUMO Cell, both made by Applied EPI. Initially, a Model

VSb110 effusion cell made by ADDON was used to supply

5N Se. However, Se vapor consists of many polyatomic

species from Se2 to Se8, and at this effusion cell’s typical

operating temperature of 325 �C (598K), the predominant

species of Se flux was Se6 (uncracked Se).7

The Se effusion cell was replaced with a Mark V

Selenium Valved Cracker made by Veeco, which directed

the Se vapor through a cracking zone, which could be heated

up to 800 �C (1073K) to produce a predominantly Se2 beam

(cracked Se).7,8 Differences in the ionization efficiencies of

the Se atomic species resulted in different sensitivities of the

BFM depending on which species were dominant. For a

fixed reservoir temperature of 250 �C and a fixed valve posi-

tion (to maintain a constant flux), the BEP measured for the

cracker source was found to vary with the cracking zone

temperature, tracking with the data found in Ref. 7. This sug-

gests that the Se flux transitions from predominantly Se6 to

predominantly Se5 at around 650K and then to predomi-

nantly Se2 near 900K (Fig. 1). The Se BEP measured for the

typical cracking zone temperature of 800 �C was found to be

close to a factor of two lower than at the typical effusion cell

temperature of 325 �C for the same amount of exiting Se

reflecting a difference in ionization energy for the various

species. This correction factor was applied to Se BEP from

the cracker source when comparing the two sources. While

the effusion cell was loaded with 5N purity Se, the cracker

was loaded with Se with 99.9999% (6N) purity.

Samples were grown at different temperatures using vari-

ous Cd to Se and Hg to Se BEP ratios. Substrate temperature

was measured with a pyrometer as well as a thermocouple on

the sample manipulator. However, samples grown using the

cracker source presented some difficulty in measuring the

substrate temperature. Heat from the high temperature crack-

ing zone was reflected off the substrate into the pyrometer,

making it more difficult to obtain an accurate measurement.

An estimate of substrate temperature was determined com-

paring thermocouple and pyrometer temperature readings.

Cut off wavelength was determined via transmittance

measurements using a Fourier transform infrared spectros-

copy and the molar fraction of CdSe in the MCS alloy, or

x-value, was determined from this measurement using the

relationship between band gap and x-value developed by

Summers and Broerman.9 Hall measurements were per-

formed over a range of temperatures from 4 to 300K, on

samples subjected to various postgrowth anneals. Finally,

secondary ion mass spectroscopy (SIMS) was performed by

the Charles Evans Analytical Group.

III. RESULTS AND DISCUSSION

A. Growth parameters

Due to the very low sticking coefficient of Hg, samples

were grown with large Hg BEPs (�10�4 Torr). For a fixed

substrate temperature and Hg overpressure, the growth rate

varies linearly with Se BEP (Fig. 2), and for a fixed Se BEP,

the x-value can be controlled by the Cd/Se BEP ratio

(Fig. 3). It was found that samples grown with cracked Se

had a higher x-value than samples grown with uncracked Se

with the same Cd/Se ratio, suggesting greater incorporation

of Cd with Se2 than Se6. Growth rates began to decrease at

approximately 130 �C for the valved source and 150 �C for

the cracker source (Fig. 4). The optimal MBE substrate tem-

perature for MCS grown with an Hg BEP of 2.5� 10�4 Torr

was �100 �C. This is lower than the optimal temperature for

MCT with a similar Hg BEP (�185 �C), most likely due to

the higher vapor pressure of Se compared to Te.

B. Hall measurements

The electron concentration versus temperature was meas-

ured for samples grown with both Se sources using Hall

FIG. 1. Se BEP vs cracking zone temperature for a fixed Se reservoir temper-

ature of 250 �C and valve position of 150 mils.

FIG. 2. (Color online) Growth rate vs Se BEP for both the effusion cell (Se6)

and the cracker source (Se2).
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Effect measurements with a standard magnetic field of 0.1 T.

A previous study of MCS grown via MBE using uncracked

Se reported little variation in electron concentration with

temperature below 100K, with the electron concentration

remaining in the 1017–1018 cm�3 range at temperatures as

low as 30K.4 This was consistent with samples grown by the

effusion cell, but MCS samples grown with the cracker

source exhibited a temperature dependency with as-grown

12K electron concentrations in the 1016–1017 cm�3 range

(Fig. 5). The relative lack of carrier freeze-out and the lower

electron concentrations with the cracker source suggest the

presence of donors with energy levels located near or within

the conduction band that were significantly reduced by

switching to the Se cracker source.

Two differences between the Se effusion cell vs the Se

cracker source that could explain the lower electron concen-

trations are the different atomic species of the Se beam

(�Se6 vs �Se2) and the higher purity source material in the

cracker source (5N vs 6N). MCS samples were grown using

the 6N Se in the cracker source, with the cracking zone tem-

perature lowered to 325 �C to produce an uncracked predom-

inantly Se6 beam. The electron concentration remained low

even when the cracking zone temperature was reduced to

325 �C (Fig. 6), strongly suggesting that the reduction in

concentration was due to the higher purity source material

and not the predominantly Se2 flux. Electron mobility for the

MCS samples increased as the x-value decreased (Fig. 7).

A prior study of HgSe annealed under Hg and Se sug-

gested that Hg interstitials (n-type), Se vacancies (n-type),

and Hg vacancies (p-type) were possible native defects in

MCS.5 These possibilities were investigated by subjecting

MCS samples to separate 24 hour, 250 �C anneals under vac-

uum, a Hg overpressure, a Cd overpressure, or a Se overpres-

sure in sealed quartz ampoules. The electron concentration

always increased when annealed under Hg or Cd, and the

electron concentration was reduced for samples grown with

the cracker source and then annealed under Se. No signifi-

cant changes were observed for samples annealed under vac-

uum (Fig. 8). RBS measurements indicated an increase in x-
value when annealed under Cd, but no significant change in

composition with the other anneals.

The lowest 12K electron concentration achieved was for

a Se-annealed sample with an x-value of 0.15. The as-grown
12K concentration of 1.2� 1016 cm�3 was reduced to

9.4� 1015 cm�3 after annealing under Se. Overall, switching

FIG. 3. (Color online) Cd composition vs Se/Cd BEP ratio for both the effu-

sion cell (Se6) and the cracker source (Se2).

FIG. 4. (Color online) Growth rate vs estimated substrate temperature with a

fixed Se BEP for both the effusion cell (Se6) and the cracker source (Se2).

FIG. 5. (Color online) As-grown electron concentration vs temperature for

MCS samples grown with both Se sources.

FIG. 6. (Color online) As-grown electron concentration at 77K vs x-value
for the effusion cell (Se6), the cracker source at typical operating tempera-

tures (Se2), and cracker source with the cracking zone temperature at 325 �C
(Se6).
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to the higher purity Se and then annealing under a Se over-

pressure typically reduced the background electron concen-

tration by an order of magnitude at 77K. Direct studies of

vacancies and interstitials are being performed through posi-

tron annihilation spectroscopy and Rutherford backscattering

channeling spectroscopy, respectively. These results will be

presented at a later date.

C. SIMS measurements

SIMS measurements were conducted on an MCS sample

grown with the effusion cell (thickness¼ 7.3 lm), an MCS

sample grown with the cracker source (thickness¼ 3.5 lm),

and a HgSe sample grown with the effusion cell (thickness

¼ 3.4 lm) in order to identify unintentional impurities

(Fig. 9). For all three samples, group VII elements such as

Br, Cl, and F were detected at the interface with the ZnTe

buffer layer. Br and Cl could be introduced during the sub-

strate preparation process and could serve as n-type dopants

if they substituted group VI Se lattice sites. C and O were

detected in a region approximately 1.5 lm thick at the sur-

face of the MCS and at the interface between MCS and

ZnTe. The source of these impurities and whether they are

electrically active in MCS needs to be established. Two

other contaminants listed in the Cd source material certifi-

cate of analysis were group VI S and group IV Si, both

of which were detected in all samples but significantly

reduced in the HgSe sample where the Cd source was not

FIG. 7. (Color online) As-grown electron mobility at 77K vs x-value for the
effusion cell (Se6), the cracker source at typical operating temperatures

(Se2), and cracker source with the cracking zone temperature at 325 �C
(Se6).

FIG. 8. (Color online) 77K electron concentration both as-grown and after

annealing under various overpressures of Hg, Se, Cd, and under vacuum.

All anneals were performed in quartz ampoules pumped down to �10�5

Torr, then sealed and kept in a furnace at 250 �C for 24 h, followed by a 3 h

cool-down. *x-value listed is prior to annealing.

FIG. 9. (Color online) SIMS results of a MCS sample grown with the effu-

sion cell (thickness¼ 7.3lm), MCS sample grown with the cracker source

(thickness¼ 3.5 lm), and an HgSe sample grown with the effusion cell

(thickness¼ 3.4 lm) for (a) carbon (b) oxygen and (c) bromine. SIMS meas-

urements were performed by the Charles Evans Analytical Group.
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used—strongly suggesting they are contaminants in the Cd

source material.

Unfortunately none of the SIMS measurements to date

have differed significantly between the MCS samples grown

with the 5N and 6N Se source material, and so the impurities

that were reduced by switching to higher purity Se source

material have yet to be identified.

IV. SUMMARYAND CONCLUSIONS

MCS samples were grown via MBE on ZnTe/Si sub-

strates using two different Se sources: an effusion cell loaded

with 5N source material that produced a predominantly Se6
beam and a cracker source loaded with 6N source material

that could be varied to study other Se polyatomic species.

Samples grown with the Se2 had greater x-values with lower

Cd/Se BEP ratios, suggesting greater Cd incorporation with

Se2. The growth rate began to decrease when the substrate

temperature was raised above �130 �C under an Se6 flux and

�150 �C under an Se2 flux. The optimal substrate tempera-

ture for MCS grown with the effusion cell was found to be

�100 �C for an Hg BEP of 2.5� 10�4 Torr—lower than the

optimal temperature for MCT growth with a similar Hg

overpressure (�185 �C).
Electron concentrations remained high even at low tem-

peratures, with as-grown 12K concentrations ranging from

1017 to 1018 cm�3 for samples grown with 5N Se source ma-

terial and 1016–1017 cm�3 for samples grown with 6N Se.

Impurities can produce energy levels located in the conduc-

tion band of narrow-gap materials, such as In dopants in

MCT. As a result, these impurities do not freeze-out at lower

temperatures and the concentration remains high even at

temperatures as low as 4K.10 The fact that the electron con-

centration remains high in MCS even at low temperatures

indicates the presence of energy levels in the conduction

band similar to MCT, and the fact that the 12K concentra-

tion was lower for 6N Se strongly suggests that impurities

are introduced from contaminants in the Se source material.

SIMS measurements detected impurities which could be

acting as donors, the most prevalent of which was C. Br and

Cl were detected at the MCS/ZnTe interface, suggesting

they could be introduced by the substrate preparation pro-

cess. Significant levels of C and O were detected at the

MCS/ZnTe interface and in the top 1.5 lm of the MCS layer

from the surface. Further measurements are required to

determine how these impurities are introduced, whether they

are electrically active, and how they can be eliminated.

The MCS electron concentration could also be changed

by postgrowth annealing. Anneals under Hg and Cd over-

pressures raised the electron concentration, while anneals

under Se or vacuum lowered the electron concentration. This

would suggest the presence of native defects such as intersti-

tials and vacancies in addition to the background impurities.

The identity of these native defects and an annealing process

to eliminate them is currently under investigation.

If MCS is to be used for LWIR applications, the back-

ground electron concentration needs to be reduced to at most

�1015 cm�3(assuming a similar lifetime to MCT). Switching

from 5N Se to 6N Se reduced the electron concentration

from 1017–1018 cm�3 to 3–5 � 1016 cm�3, suggesting that

the background concentration could be further reduced by

using 7N or higher purity Se source material. Further study

of native defects present in MCS is required so that a process

for removing them through postgrowth annealing can be

optimized. Once the background electron concentration has

been fully minimized, p-type doping of MCS can be devel-

oped so that MCS device layers can be produced.
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Quantum Well Infrared Photodetectors

Kwong-Kit Choi, Fellow, IEEE, Murzy D. Jhabvala, David P. Forrai, Senior Member, IEEE, Augustyn Waczynski,
Jason Sun, and Robert Jones

Abstract—The quantum efficiency (QE) of a quantum well in-
frared photodetector (QWIP) is historically difficult to predict and
optimize. This difficulty is due to the lack of a quantitative model to
calculate QE for a given detector structure. In this paper, we found
that by expressing QE in terms of a volumetric integral of the ver-
tical electric field, the QE can be readily evaluated using a finite
element electromagnetic solver. We applied this model to all known
QWIP structures in the literature and found good agreement with
experiment in all cases. Furthermore, the model agrees with other
theoretical solutions, such as the classical solution and the modal
transmission-line solution when they are available. Therefore, we
have established the validity of this model, and it can now be used
to design new detector structures with the potential to greatly im-
prove the detector QE.

Index Terms—Electromagnetic field modeling, infrared detector,
quantum efficiency (QE).

I. INTRODUCTION

AWELL-known property of quantum well infrared pho-
todetector (QWIP) materials is their lack of optical ab-

sorption under normal incident condition. Consequently, each
detector in an array is outfitted with a light-coupling structure
for detection. Although the coupling designs are usually guided
by certain physical principles, their exact quantum efficiencies
(QEs) are not always predictable. In the cases where analyt-
ical models do exist, they inevitably contain assumptions or
simplifications, such as infinite detector sizes or infinite metal
conductivities, that render the predictions inaccurate. The lack
of a quantitative model has thus far prevented the QE improve-
ment, and as a result, the QWIP technology has generally been
regarded as a low QE technology.

One attempt in the past to yield a quantitative prediction
is through rigorous electromagnetic (EM) modeling [1]–[4],
but the success was rather limited. Recently, we showed that
by expressing QE as an integral of the vertical electric field
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Ez , its value can be readily and reliably computed by a com-
mercial finite element EM solver [5]. We applied this model
to several detector structures and obtained quantitative agree-
ments with experiments. In this paper, we expand this study
to include all known geometries in the literature and report
its finding. For completeness, we also report those described
in [5]. The structures surveyed in this paper are: edge-
coupled QWIPs, linear- and cross-grating QWIPs, random-
grating QWIPs, corrugated-QWIPs of prism and pyramidal
geometries, enhanced-QWIPs, quantum grid infrared photode-
tectors, plasmonic-enhanced QWIPs, and photonic-crystal-slab
QWIPs. In addition, we also compare the numerical solu-
tions with the analytical classical solutions in the cases of
edge-coupled detectors and corrugated QWIPs and the modal
transmission-line solutions in the case of quantum grid infrared
photodetectors. The agreements turn out to be satisfactory in all
examples. With a verified model, we use it to design and op-
timize new detectors. The result shows that the theoretical QE
can reach 70–80% in some cases without an antireflection (AR)
coating. Therefore, QWIPs can have a potential for high QE.

II. EM MODEL

Previously, we have established that by performing finite-
element EM computation to the following expression, the ab-
sorption QE, labeled as η, of any detector geometry can be
predicted [5]:

η =
nα

AE2
0

∫

V

|Ez (�r)|2 d3r (1)

where n is the material refractive index of the detector material,
α is the absorption coefficient for vertically polarized light, A is
the detector area, E0 is the incident electric field from the air, V
is the detector active volume, Ez is the self-consistent vertical
electric field. Equation (1) states that QE can be calculated from
the volume integral of |Ez |2 in the presence of a finite α.

Since E0 and Ez are linearly proportional to each other, E0
can be set arbitrarily, and the only input parameter in (1) is the
wavelength-dependent α(λ), which can be calculated based on
the material layer structure [6]. For a known α(λ), there will
be no more free parameters, and the value of η(λ) is uniquely
and unambiguously determined. To solve Ez numerically, we
use a commercial finite element solver. In addition to η, we also
define another quantity, the external QE or ηext , which is QE ×
pixel area fill factor (≡A/Apitch ).

1077-260X/$31.00 © 2012 IEEE
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Fig. 1. The figure shows a θ = 45◦ edge-coupled QWIP. The figure also
shows |E | and Ez distributions obtained from EM modeling at λ = 10 μm with
E0 = 377 V/m.

III. EM SOLUTIONS

To assess the reliability of our model, we first apply (1) to a
light-coupling scheme that has a classical solution. It is the edge
coupling via a 45◦ polished facet [7]. Fig. 1 shows the detector
geometry.

The classical solution ηc for this geometry is

ηc(45◦) = Tsub
cos 45◦

2
[1 − exp (−α(45◦)L(45◦))] (2)

where Tsub = 4n/(1 + n)2 is the transmission coefficient of the
GaAs substrate; α(45◦) = αsin245◦ is the material absorption
coefficient at 45◦; L(45◦) = 2t/cos(45◦) is the optical pathlength
inside the detector for two passes of light, and t is the active
material thickness. In (2), the first cos(45◦) accounts for the
smaller projected detector area in the direction of light and the
factor 1

2 accounts for the fact that only half of the light, the
transverse magnetic (TM) mode, is coupled. In this classical
model, if α is constant with respect to wavelength, ηc will also
be wavelength independent. For a typical α of 0.15 μm−1 and t
of 3 μm, ηc (45◦) can be conveniently calculated to be 12.3%.

Since under the present detector geometry, the direction per-
pendicular to the plane of incidence is invariant, we reduce (1)
to 2-D, in which

η(λ) =
nα

2dE2
0

∫

X

|Ez (r, λ)|2 d2r (3)

where the factor 1
2 accounts for one coupled polarization (the

TM mode), d= 100 μm is the assumed detector linear dimension
in the horizontal direction, E0 = 377 V/m, and X = d × t is
the detector cross-sectional area. The present example consists
of a 3-μm active layer on top of a GaAs substrate, a 1-μm
top GaAs contact layer, and a 1-μm gold contact layer. The

Fig. 2. The figure shows the calculated QE as a function of incident λ at three
different edge angles. The dashed line shows the classical value at 45◦.

properties of gold are represented by a wavelength-dependent
complex refractive index. The value of α is again taken to be
0.15 μm−1 , independent of λ. Although α is a constant in this
model, the computed Ez distribution and, thus, η nevertheless
are λ-dependent because of the wave nature of light. The detector
is placed near the edge of a polished GaAs substrate, and the
length scale is indicated in Fig. 1(b).

The color plot in Fig. 1(a) shows the absolute magnitude of
the total E field. Most of the detector active region is found to
be uniformly illuminated at this angle except those near the cor-
ners. On the left, the circled region is shadowed by the substrate
in the front, which prevents the light incident directly into the
detector. On the right, the reflection surfaces at the top, at the
side, and at the substrate, form a Fabry-Perot etalon and pro-
duce the rapidly varying intensity. The Ez component, which is
responsible for absorption, is plotted in Fig. 1(b). Due to the in-
terference between the incident light and the reflected light from
the top surface, a standing wave of local maxima and minima is
established.

By integrating |Ez |2 within the active cross section according
to (3), η can be evaluated. The result is shown in Fig. 2, along
with two other edge angles. The QEs only weakly depend on
λ, partially validating the classical assumption. At 45◦, η varies
with two distinct frequencies. The slow variation is due to the
gradual shift of the standing wave along the vertical axis as
λ changes. It is centered around ∼12.3%, in agreement with
the classical model. The higher frequency oscillations are the
Fabry–Perot oscillations produced at the right-hand corner. This
example shows that the EM model, being a numerical solution
to Maxwell equations, is not only consistent with the classical
model but also accounts for all other optical effects neglected in
the classical model [7].

For 3-D modeling, we first examine the external QE of a linear
grating that was used in a polarization detection experiment [8].
The detector area A is 18.6 × 18.6 μm2 and the pixel pitch
area Apitch is 20 × 20 μm2 . The detector structure is shown
in Fig. 3(a). The calculated Ez distribution at the center cross
section is shown in Fig. 3(b) for E0 = 377 V/m perpendicu-
lar to the grating lines. The corresponding (unpolarized) ηext
is shown in Fig. 3(c) based on the α spectrum calculated from
the material structure. The theoretical peak ηext is 14.1% for
this optical polarization. Experimentally, the peak responsivity
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Fig. 3. (a) Grating having 2.7-μm grating period and 0.68-μm depth. (b) Ez

distribution at the center cross section at λ = 8.3 μm. (c) Calculated (dashed
curve) and measured QE (solid curve).

R for this polarization was measured to be 0.48 A/W. With the
reported photoconductive gain g of 0.57, the deduced ηext is
12.5%, which is only slightly lower than the prediction by a
factor of 1.12. Besides, the agreement in the QE magnitude,
the calculated lineshape also matches well with the measured
spectrum as shown in Fig. 3(c). Therefore, the EM model suc-
cessfully explains the light-coupling characteristics of a linear
grating.

Fig. 4(a) shows the next example of a cross grating [9]. This
grating-QWIP consists of a 1.5-μm active QWIP material, a
1.5-μm top contact layer, a 1.5-μm bottom common contact
layer, and a 0.1-μm etch stop layer. The pixel pitch is 25 μm.
To model the experimentally realized structure, we set the pixel
dimension to be 25 μm at the base and 23 μm at the mesa
top. The square frame around the grating grid has a height of
0.6 μm and a width of 2 μm at the top. Inside the frame, the
grating height is 0.4 μm and the grating period is 4.0 μm. The
widths of the base and tip of the grid lines are 0.9 and 0.3 μm,
respectively. Fig. 4(b) shows the center cross section of the
modeled structure without the top metal cover layer. This top

Fig. 4. (a) Experimental grating structure. (b) Modeled structure and the Ez

distribution in the center cross section at λ = 11.0 μm. (c) Experimental data
scaled by a factor of 1.2 (solid curve with circles), the calculated QE of the
grating (dashed curve), and the calculated QE without the grid lines (solid
curve).

metal cover is replaced by the perfect electric conductor (PEC)
boundary condition in the model. The calculated peak α of this
material is 0.10 μm−1 at 11.3 μm, and the 50% cutoff is at
12.1 μm.

Experimentally, the peak conversion efficiency CE (≡η × g)
is measured to be 2.41% at 0.78 V. Together with an estimated
g = 0.56, which is scaled from a 60-period structure, the external
QE is 4.31%. This experimental QE is 20% lower than the 5.0%
predicted from the EM model shown in Fig. 4(c). By multiplying
the experimental value with a factor of 1.2, a good match of the
spectral lineshape is obtained below 12 μm. The theoretical QE
beyond 12 μm is limited by the assumed material absorption,
which cuts off at 12.1 μm. Overall, the present EM model is
adequate in explaining the grating efficiency after taking the
detailed detector structure into account. As seen in Fig. 4(a), the
present mesa has substantially inclined sidewalls. By repeating
the calculation without the grid lines, we found the sidewall
reflection contributes to about 33% of the QE near the peak
wavelengths.

Fig. 5(a) shows the geometry of a random grating invented
by Brill and Sarusi [10], [11]. The pixel size is 28 μm × 28 μm
and the grating height is 0.67 μm. The thickness of the active
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Fig. 5. (a) Random grating QWIP. (b) Ez distribution at the center cross
section at λ = 8.7 μm. (c) Calculated (dashed curve) and measured QE (solid
curve).

material is 3.28 μm and the thickness of the bottom contact
is 0.95 μm. The substrate is completely removed and an AR-
coating is applied to the detector. Fig. 5(b) shows the layer
structure. The QWIP material contains 50 periods of 55-nm-
thick AlGaAs barriers and 4.9-nm-thick quantum wells doped
to 5 × 1017 cm−3 , with which the peak α is calculated to be
0.104 μm−1 . Experimentally, the peak detector responsivity is
measured to be 0.6 A/W, at which bias, the gain is 0.32. The
measured QE is thus 23.4%. On the other hand, the calculated
QE is 27.9%, which is 20% larger than the experimental value.
Fig. 5(c) shows the calculated and the measured lineshapes,
which are in satisfactory agreement.

Fig. 6(a) shows another grid structure, which is known as
the enhanced-QWIP [12]. But different from a cross grating,
the active detector material in this case is etched to form the
grid structure and the radiation is incident directly onto the grid.
Fig. 6(a), (b), and (c) show the detector structure, the Ez field
distribution at λ of 9.2 μm, and the calculated QE for a constant
α of 0.21 μm−1 , respectively. This value of α is calculated from
the material structure at the absorption peak. Fig. 6(c) also plots
the measured QE of two different detectors at their peaks. The
theory and experiment are in agreement with each other.

Similar to the enhanced-QWIP, the structure of a quantum
grid infrared photodetector (QGIP) is shown in Fig. 7. It consists
of a linear array of grid lines of active materials. In the modeled
structure, the top gold layer thickness tm is 0.2 μm, the top
contact layer thickness tc is 0.1 μm, the active layer thickness
ta is 1.18 μm, the bottom contact layer thickness tb is 1.83 μm,

Fig. 6. (a) E-QWIP geometry. (b) Color plot of Ez distributions at 9.2-μm
incident wavelength. The displayed plane is located at the center the grid layer.
The grid has a period of 8 μm, a strip width of 1.2 μm, and a strip height
of 1.43 μm. The back of the grid is coated with a 0.4-μm layer of gold. (c)
Calculated (curve) and the observed QEs (squares) are shown.

and the separation among the grid lines s is 4.65 μm. The width
of the grid line w, which determines the detection wavelength λp

of the detector, varies among different detectors. The substrate
is assumed to be thick such that the light enters into the detector
from the substrate side classically with a transmission coefficient
Tsub .

Previously, λp of the detector had been designed using the
2-D modal transmission-line (MTL) method [13]. Fig. 8 shows
that by choosing w appropriately, the detectors can be made to
detect at each integral wavelengths from 8 to 15 μm. In that
modeling, a constant relative dielectric constant of 9.722 + i
had been adopted for the active layer, and the refractive in-
dex of GaAs was set to be 3.118. Based on the present finite
element method (FEM), we repeat the same calculation using
the identical detector parameters. Fig. 8 shows that the present
FEM solution agrees closely with the previous MTL solution,
confirming both methods. The small differences in the shorter
wavelengths could be due to the truncation of certain infinite
Fourier series in the MTL approach.
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Fig. 7. (a) Top view of a QGIP. The numbers are dimensions in microns. (b)
Side view.

Fig. 8. QE spectra calculated based on (a) FEM (solid curves) and (b) MTL
method (dashed curves) having the same detector parameters. The numbers are
w in microns.

In Fig. 9, we plot the experimental coupling efficiency of
two QGIP detector elements [13], which is defined as the ratio
of the responsivities of the grid and the edge-coupled detec-
tor. This ratio cancels out the material α dependence and it is
directly proportional to the detector QE with a constant α. In
Fig. 9, we also show the theoretical QE with a constant α of
0.20 μm−1 and n = 3.239 using the FEM model. Since the
substrate of these detectors is about 200-μm thick, the classical
substrate transmission is applicable in this calculation. The cal-
culated spectrum in Fig. 9 explains the overall lineshape in the
experiment, although one cannot compare the absolute QE in
this plot. Note that the experimental spectrum is averaged over
180 narrow and long (400-μm) grid lines. The width fluctua-
tions along the grid lines are expected to broaden the QE peak
predicted by the theory. Therefore, the present EM modeling is
also applicable to the QGIP structure.

In the previous MTL analysis, it was determined with a large
s = 4.65 μm, the diffraction effect among the grid lines is
small and the metal contact on top of each grid line serves as
a half-wave antenna. An absorption peak will occur whenever
the incident λ ≈ 2nw. To verify this conclusion, we plot the
Ez distribution at λp = 11.1 μm of the w = 1.8 μm detector
in Fig. 10. The dipole scattering field distribution inside the
grid lines is evident in this plot, which validates the previous
conclusion.

Fig. 9. Measured (solid curve) coupling efficiency and the calculated QE
(dashed curve) for (a) w = 1.80 μm and (b) w = 2.33 μm. The value of w is
measured using scanning electron microscope.

Fig. 10. Ez distribution based on FEM with E0 = 377 V/m.

Fig. 11 shows the 3-D geometry and the Ez distributions of
a prism-shaped corrugated QWIP. This detector geometry uses
optical reflection at the angled sidewalls to create the needed
Ez . This detector geometry also accepts a classical solution
for QE based on ray optics [15]. Fig. 12 shows the classical
solution, the rigorous EM solution, and the average experimental
QE spectra for two focal plane arrays (FPAs) having different
cutoff wavelengths. Fig. 12(a) is for a QWIP containing 60
periods of 700-Å Al0.166Ga0.834As and 60-Å GaAs. This active
material is placed in the middle of the corrugation and the rest
of the volume is filled with contact materials. The array is not
antireflection (AR) coated. The calculated α spectrum has a
peak at λ = 11.9 μm with a value of 0.105 μm−1 and a 50%
cutoff at λ = 12.7 μm. Fig. 12(b) is from another QWIP that is
made of 60 periods of 700-Å Al0.23Ga0.73As and 48-Å GaAs.
The calculated α is peaked at λ = 8.7 μm with a value of
0.145 μm−1 . Fig. 12 again shows the agreement among the two
theoretical models and the experimental data in terms of the
spectral lineshape and the absolute magnitude. Accounting for
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Fig. 11. Detector geometry, which is without an antireflection (AR) coating.
The Ez distribution is shown at λ = 11.2 μm with E0 = 377

√
2 V/m.

Fig. 12. Figure shows the calculated and measured external QE of two detector
materials without an AR-coating.

the optical interference, the EM model is better equipped than
the classical model in describing the QE oscillations.

Fig. 13 shows the geometry of a pyramidal C-QWIP, which
is AR coated (ARC). This detector geometry has four angled
sidewalls to reflect light. As shown in Fig. 14(a), both the clas-
sical [15] and the EM models predict the peak QE correctly.
The large discrepancy in the spectrum around 8 μm is due to
the known epoxy glue absorption used in the FPA integration.

Fig. 13. Detector geometry and the Ez distribution at λ = 8.8 μm where
E0 = 377

√
2 V/m. This detector is glued to a piece of silicon using epoxy.

Fig. 14. (a) Calculated and measured external QE spectra of a pyramid-shaped
C-QWIP FPA. (b) Infrared image taken by the corresponding 1-MP FPA.

The infrared image in Fig. 14(b) was taken by the corresponding
1-megapixel FPA camera.
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Fig. 15. (a) Plasmonic-enhanced QWIP structure. (b) Calculated Ez at λ =
8.3 μm with E0 = 377

√
2 V/m.

Fig. 16. Measured (solid curve) and the calculated QE with a constant α =
0.05 μm−1 (dashed curve) of a plasmonic enhanced QWIP.

Fig. 15(a) shows the top view of a plasmonic enhanced QWIP
studied by Wu et al. [16]. In this structure, a 400-Å-thick gold
film perforated with circular holes is deposited on a 0.528 μm-
thick InGaAs/InP active material. The spacing between two
holes is 2.9 μm and their diameter is 1.4 μm. The active ma-
terial has a low doping such that the peak α is calculated to
be 0.05 μm−1 . The modeled Ez distribution at 0.25 μm below
the gold film is shown in Fig. 15(b). From the Ez distribution,
the calculated QE for this constant α is shown in Fig. 16. It is
peaked at λ = 8.3 μm. Meanwhile, from the measured R spec-
trum [16] and the estimated gain of 8.5 from a similar detector
structure [17], the experimental QE is deduced to be 12.6%,
which agrees with the theory to within 10%, and the two spectra
have similar lineshapes.

Fig. 17 shows the cross sections of a photonic-crystal-slab-
QWIP (PCS-QWIP) studied by Kalchmair et al. [18]. The nom-

Fig. 17. Cross sections of the PCS-QWIP and the calculated Ez at one of the
sharp peaks with λ = 6.44 μm or ν = 1552 cm−1 .

Fig. 18. Measured photocurrent spectrum in arbitrary unit (solid curve), and
the calculated QE spectrum based on the displayed α spectrum.

inal structure consists of an array of air holes with hole spacing
a = 3.1 μm and hole diameter d = 1.24 μm etched through the
active and contact materials. The active material thickness ta
is 1.5 μm, and the bottom contact thickness tc is 0.5 μm. The
PCS is suspended in the air at a nominal height tair = 2.0 μm
above the GaAs substrate. The measured photocurrent spectrum
is shown in Fig. 18. Based on the material α spectrum shown in
Fig. 18, which is deduced from the measured photoresponse of
the edge-coupled detector [18], the QE spectrum is calculated
and it indeed contains the characteristic sharp peaks. However,
the calculated sharp peaks do not align exactly with the measure-
ment. To obtain a better alignment as that shown in Fig. 18, the
theoretical parameter a is reduced slightly from 3.1 to 2.9 μm.
This discrepancy could be due to experimental uncertainties or
theoretical assumption of an average n of 3.239 over a wide
range of wavelengths. In reality, the value of n varies from 3.34
at 4 μm to 3.04 at 11 μm. In addition to the adjusted a, the
magnitudes of these peaks depend weakly on tair . To obtain a
larger peak at position A in Fig. 18, tair is adjusted from 2.0 to
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Fig. 19. Absorption coefficient α assumed in the EM modeling.

0.9 μm. A different tair could be due to the sagging of the PCS
in the air at the operating temperature. From the modeling, the
sharpness of these peaks is caused by two factors. One is the
nearly symmetrical detector structure, both in vertical and hor-
izontal directions, that induces strong resonances. The second
is the weak material absorption at the peak wavelengths, which
introduces only small damping effects on the resonances. The
close match of the main peak and some of the side peaks lends
support for the present modeling approach.

IV. EM DESIGN

After the EM model is verified by the existing experiments,
we can use it for detector design. In the past, the design of a light-
coupling structure has been focused mainly on the diffractive
element (DE) placed on top of the detector. The size, thickness,
and shape of the detector were not part of the consideration.
The present modeling instead allows the design of the DE and
the detector volume as one integral light-coupling entity. We
found that the detector volume actually plays a crucial role in
determining QE, in which it acts as a resonant cavity to the light
diffracted from the DE. With the versatility of the finite element
method, one is also able to consider a much wider variety of
DEs whose patterns can be far more complex than that of a
regular grating. In general, a DE can be in the form of a pho-
tonic Bravais lattice with a basis or in the form of irregularly
distributed scatterers. The basis and scatterers can be of any 3-D
geometrical objects. The opening up of these arbitrary patterns
offers tremendous choices of QE characteristics both in spec-
tral lineshape and in absolute magnitude. This versatility in the
detector geometrical design adds to the well-known versatility
in the QWIP material design. The combination of the two will
yield a tremendous flexibility in designing the specific detector
optical properties. The integration of a DE and a resonant cavity
is referred to as the resonator QWIP [19], or the R-QWIP. With
different DE designs to suit different applications, there will
be different types of R-QWIPs. We have since studied a large
number of these detector designs and obtained a wide range of
coupling characteristics. Here, we describe two of the simplest
designs for illustration purposes: one is the grating-resonator-
QWIP or GR-QWIP and another is the ring-resonator-QWIP or
RR-QWIP.

Fig. 20. Calculated QE for different detector size p for (a) a constant α of
0.20 μm−1 and (b) a varying α according to Fig. 19.

First, we optimize a 25-μm pitch GR-QWIP without an AR-
coating for 8–9-μm detection. The value of α is either assumed
to be constant at 0.20 μm−1 or a narrowband spectrum shown
in Fig. 19. The period of the grating is first set at 2.7 μm.
All the rest of the parameters, such as the active layer thick-
ness, the grating height, the bottom contact thickness, and the
pixel linear size p, are adjusted to give the maximum QE in the
8–9-μm band. Fig. 20 shows one of the optimizing procedures
by varying p alone, while all other parameters have been opti-
mized. The result shows that the pixel size has a modest effect
in the QE in this case. For a constant α, the maximum QE is
78.6% achieved by a p = 22-μm GR-QWIP at λ = 8.1 μm.

The aforementioned modeling shows that the GR-QWIP is a
promising detector structure for narrowband detection. Using an
array of square rings as the DE instead, the coupling bandwidth
can be widened as shown in Fig. 21(a). In this structure, the
outer dimension of each ring is 4 μm and the inner dimension
is 1.4 μm. The wider bandwidth is beneficial even for a narrow
band material as seen in Fig. 21(b). It reduces the spectral varia-
tions with different p and preserves the absorption lineshape of
the material. The largest QE in Fig. 19(a) is 73.1% achieved at
p = 21.5 μm and λ = 9.9 μm.

Since these GR-QWIPs and RR-QWIPs will be built on a
very thin active material layer, the photoconductive gain can be
as large as 0.6 at full bias. Therefore, the estimated conversion
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Fig. 21. Calculated QE for different detector size p for (a) a constant α of
0.20 μm−1 and (b) a varying α.

Fig. 22. Calculated QE for different RR-QWIP detector sizes for a varying α
according to Fig. 19.

efficiency is about 40%, which is adequate for many high-speed
applications.

V. MODELING OF IMPERFECTIONS AND CROSSTALKS

The above calculations assumed that the designed structures
can be produced faithfully in experiment, which may not always
be feasible technologically or economically. The present model
is adept in determining the impacts of processing imperfections
such as size nonuniformity and deformed DEs by modeling the
actual fabricated structures. The subsequent optimization can be
performed on the realizable patterns. Fig. 22 shows one of such
examples in modeling the optimized RR-QWIPs with rounded
ring corners. The result for the 23-μm detector shows that by
adjusting other detector parameters, the rounded rings can have
very similar QE as the square rings. Based on the rounded ring
structure, one can also design efficient detectors for smaller

Fig. 23. Calculated QE of the neighboring RR-QWIP pixels when a plane
wave is incident onto the center pixel. The legend specifies the pixel coordinates.

pixel sizes. As shown in Fig. 22, the detector can have 57% QE
for 13-μm pixels and 40% QE for 8-μm pixels.

EM modeling can also be used to determine other FPA prop-
erties such as pixel crosstalk. For small pitch arrays, crosstalk
due to pixel optical diffraction is a concern. In order to deter-
mine the amount of crosstalk, one can evaluate the values of QE
of the surrounding pixels while only the center pixel pitch area
is illuminated. Fig. 23 shows an example for the 10-μm pitch
arrays, in which the result for five nearest neighbors is plotted.
From this calculation, the crosstalk is estimated to be less than
2.5% for the RR-QWIP structure.

VI. CONCLUSION

The QE of a detector uniquely determines its sensitivity under
background-limited infrared performance condition and, hence,
it is a critical figure of merit to consider for a detector technology.
QWIPs possess many unique advantages, but historically suffer
from a low QE. This low QE is due to the lack of a quantitative
model to perform detector design and optimization. In this paper,
we have established an EM model of using (1) to calculate QE
explicitly. This approach is shown to be able to provide a quanti-
tative answer to any detector geometry in any degree of desired
detail. We verified its accuracy and reliability with experiments
and with analytical classical and modal transmission-line solu-
tions. With this approach, one can now ascertain the optical cou-
pling properties according to its physical construct. It is also well
known that the absorption properties of the detector material can
be calculated accurately from its layer structure. With the advent
of a rigorous model for the light-coupling structure, the QWIP
technology can now enter into a new era, in which all of its opti-
cal properties can be engineered in precision. This feature will be
invaluable to FPA production and application. In this paper, we
also optimized a grating resonator to achieve a high QE and de-
signed a ring resonator to broaden its coupling bandwidth. Other
coupling lineshapes can also be similarly designed to suit any
applications.



	  	
733800310 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013

REFERENCES

[1] A. De Rossi, E. Costard, N. Guerineau, and S. Rommeluere, “Effect of
finite pixel size on optical coupling in QWIPs,” Inf. Phys. Technol., vol. 44,
pp. 325–330, 2003.

[2] K. K. Choi, K. M. Leung, T. Tamir, and C. Monroy, “Light coupling
characteristics of corrugated quantum well infrared phorodetectors,” IEEE
J. Quantum Electron., vol. 40, no. 2, pp. 130–142, Feb. 2004.

[3] D. W. Wilson, “Electromagnetic modeling of multi-wavelength QWIP
optical coupling structures,” Inf. Phys. Technol., vol. 52, pp. 224–228,
2009.

[4] J. Wang, X. Chen, Z. Li, and W. Lu, “Study of grating performance for
quantum well photodetectors,” J. Opt. Soc. Amer. B., vol. 27, pp. 2428–
2432, 2010.

[5] K. K. Choi, M. D. Jhabvala, D. P. Forrai, A. Waczynski, J. Sun, and
R. Jones, “Electromagnetic modeling of quantum well infrared photode-
tectors,” IEEE J. Quantum Electron., vol. 48, no. 3, pp. 384–393, Mar.
2012.

[6] K. K. Choi, The Physics of Quantum Well Infrared Photodetectors.
Singapore: World Scientific, 1997, pp. 122–125.

[7] K. K. Choi, “Electromagnetic modeling of edge coupled quantum well
infrared photodetectors,” J. Appl. Phys., vol. 111, pp. 124507-1–124507-
4, 2012.

[8] A. Nedelcu, H. Facoetti, E. Costard, and P. Bois, “Small pitch, large format
long-wave infrared QWIP focal plane arrays for polarimetric imagery,”
Proc. SPIE, vol. 6542, pp. 65420U-1–9, 2007.

[9] M. Jhabvala, K. Choi, A. Waczynski, A. La, M. Sundaram, E. Costard,
C. Jhabvala, E. Kan, D. Kahle, R. Foltz, N. Boehm, M. Hickey, J. Sun,
T. Adachi, N. Costen, L. Hess, H. Facoetti, and M. Montanaro, “Perfor-
mance of the QWIP focal plane arrays for NASA’s landsat data continuity
mission,” Proc. SPIE, vol. 8012, pp. 80120Q-1–14, 2011.

[10] B. Brill and G. Sarusi, “QWIP research and development of 320×256
QWIP arrays in EL-OP,” Proc. SPIE, vol. 3061, pp. 781–788, 1997.

[11] B. Brill and G. Sarusi, “System considerations in the design of QWIP-
based thermal imagers,” Proc. SPIE, vol. 3436, pp. 270–277, 1998.

[12] T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and
L. T. Claiborne, “Enhanced quantum well infrared photodetector with
novel multiple quantum well grating structure,” Appl. Phys. Lett., vol. 68,
pp. 2846–2848, 1996.

[13] K. K. Choi, G. Dang, J. W. Little, K. M. Leung, and T. Tamir, “Quantum
grid infrared spectrometer,” Appl. Phys. Lett., vol. 84, pp. 4439–4441,
2004.

[14] L. Yan, M. Jiang, T. Tamir, and K. K. Choi, “Electromagnetic modeling
of quantum-well photodetectors containing diffractive elements,” IEEE J.
Quantum Electron., vol. 35, no. 12, pp. 1870–1877, Dec. 1999.

[15] K. K. Choi, C. J. Chen, and D. C. Tsui, “Corrugated quantum well in-
frared photodetectors for material characterization,” J. Appl. Phys., vol. 88,
pp. 1612–1623, 2000.

[16] W. Wu, A. Bonakdar, and H. Mosheni, “Plasmonic enhanced quantum well
infrared photodetector with high detectivity,” Appl. Phys. Lett., vol. 96,
pp. 161107-1–161107-3, 2010.

[17] S. U. Eker, Y. Arslan, A. E. Onuk, and C. Besikci, “High conversion
efficiency InP/InGaAs strained quantum well infrared photodetector focal
plane array with 9.7 μm cut-off for high-speed thermal imaging,” IEEE J.
Quantum Electron., vol. 46, no. 2, pp. 164–168, Feb. 2010.

[18] S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile,
R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal
slab quantum well infrared photodetector,” Appl. Phys. Lett., vol. 98,
pp. 011105-1–011105-3, 2011.

[19] K. K. Choi, “Photodetectors using resonance and method of making,”
U.S. Patent. 2012/0012816 A1, 2012.

Kwong-Kit Choi (SM’99–F’07) received the B.S. degree from the University
of Hong Kong, Kowloon, Hong Kong, in 1979, and the Ph.D. degree in physics
from Yale University, New Haven, CT, in 1984.

He is currently a Senior Research Scientist for Physical Sciences at the U.S.
Army Research Laboratory, Adelphi, MD. His publications include The Physics
of Quantum Well Infrared Photodetectors (World Scientific, 1979). He has been
awarded 13 patents in the QWIP area. His current interests are focal plane array
demonstration, new detector design, and infrared optoelectronics.

Dr. Choi is a Fellow of the American Physical Society and the Army Research
Laboratory, and a member of SPIE. He is an inductee of the NASA Space
Technology Hall of Fame and the recipient of the Distinguished Presidential
Rank Award.

Murzy D. Jhabvala received the Ph.D. degree from the University of Maryland,
College Park, MD.

He is a Chief Engineer of the Instrument Systems and Technology Division,
NASA Goddard Space Flight Center, Greenbelt, MD. He has designed, fabri-
cated, and flight qualified PMOS/CMOS integrated circuits, and has developed
the internal reference source for the Cosmic Background Explorer. He was the
co-inventor of the polysilicon microfilament IR sources used on the Spitzer
Telescope, and led/codeveloped (with ATT/Bell Labs and Rockwell Science
Center) the first long wave GaAs QWIP 128 × 128 array. He was the Principal
Investigator for the development of the 640 × 512 GaAs QWIP Hyperspectral
(4–15 μm) Imaging System and the LWIR 1K × 1K QWIP array. He led the
development of the microshutter arrays for the James Webb Space Telescope
project and led the QWIP-based focal plane development team for the thermal
IR instrument on NASA’s next Landsat mission.

David P. Forrai (SM’07) received the B.S. degree in electrical engineering
from the University of Wisconsin-Madison, Madison, and the M.S. degree in
electrical engineering from The Ohio State University, Columbus.

He is a Senior Electrooptics Engineer at L-3 Communications Cincinnati
Electronics, Mason, OH. His current research focuses on advanced focal plane
arrays including dual-band/multicolor FPAs, high-quantum efficiency corru-
gated QWIP FPAs, and polarimetric FPAs.

Augustyn Waczynski received the M.S.E.E. degree from Warsaw Polytechnic,
Warsaw, Poland.

He is a Senior Electronics Engineer in the NASA Goddard Space Flight
Center, Greenbelt, MD. He works in Detector Characterization Laboratory spe-
cializing in electro optical measurements and calibration of large format focal
planes for space applications.

Jason Sun received the B.S. degree in physics from Nanjing University and the
M.S. degree in physics from University of Kansas.

He is a Physicist at the U.S. Army Research Lab, Adelphi, MD. He has
experiences in a wide range of optoelectronic and RF device physics and fab-
rication. He conducted research and development on C-QWIP FPA fabrication,
RF tunable capacitor design, and characterization and silicon microbolometer
uncooled FPAs. He has more than ten years’ experience in research on conven-
tional and high-Tc superconductors and expertise in high-Tc superconductor
epitaxial thin-film growth and characteristic test and analyze. He has three
patents and over 30 publications.

Robert Jones received the B.S. degree in physics from the University of South
Florida, Tampa, and the M.S. degree in physics and the Ph.D. degrees in electrical
engineering from the University of Cincinnati, Cincinnati.

He is a Senior Engineer at L-3 Communications Cincinnati Electronics,
Mason, OH. His current research focuses on advanced focal plane array photo
detector structures and materials including QWIP, barrier, and SLS structures
with emphasis on developing processes with high manufacturability.





Research@

	  	
75

Passive Infrared Sensing Using  
Plasmonic Resonant Dust Particles

Mark Mirotznik, William Beck, Kimberly Olver, John Little and Peter Pa

International Journal of Optics 2012, 651563 (8 pp.)-651563 (8 pp.)651563 (8 pp.).



	  	
76

Hindawi Publishing Corporation
International Journal of Optics
Volume 2012, Article ID 651563, 8 pages
doi:10.1155/2012/651563

Research Article

Passive Infrared Sensing Using Plasmonic Resonant
Dust Particles

Mark Mirotznik,1 William Beck,2 Kimberly Olver,2 John Little,2 and Peter Pa1

1 Department of Electrical and Computer Engineering, University of Delaware, 106 Evans Hall, Newark, DE 19716, USA
2 Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783, USA

Correspondence should be addressed to Mark Mirotznik, mirotzni@ece.udel.edu

Received 5 May 2012; Accepted 24 June 2012

Academic Editor: Georgios Veronis

Copyright © 2012 Mark Mirotznik et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present computational and experimental results of dust particles that can be tuned to preferentially reflect or emit IR radiation
within the 8–14 µm band. The particles consist of thin metallic subwavelength gratings patterned on the surface of a simple quarter
wavelength cavity. This design creates distinct IR absorption resonances by combining the plasmonic resonance of the grating with
the natural resonance of the cavity. We show that the resonance peaks are easily tuned by varying either the geometry of the grating
or the thickness of the cavity. Here, we present a computational design algorithm along with experimental results that validate the
design methodology.

1. Introduction

Most objects, either manmade or found in nature, reflect and
emit infrared (IR) radiation in a relatively smooth spectrum;
however, by applying structures with resonant absorption to
the surface of those materials, the reflection and emission
spectra can be enhanced or reduced at particular wavelengths
(as illustrated in Figure 1). Moreover, by mixing small
resonant particles (<100 µm) designed for several different
wavelengths, we can create IR dust that reflects or emits
with a characteristic spectral signature. Such material-by-
design particles would be useful for a variety of practical
applications. For example, when applied to a base surface,
the resonant particles could be used to tune an IR reflectance
to mimic other natural or manmade surfaces. This could be
useful as a calibration standard for hyperspectral imaging
systems. Additionally, if the particles are chemically func-
tionalized, there are a number of remote atmospheric sensing
applications that could be explored.

2. Infrared Absorbers Using Plasmonic Gratings

It is well known that metallic surfaces patterned on a sub-
wavelength scale exhibit unusual electromagnetic properties

at optical wavelengths. In particular, the presence of localized
surface plasmon resonances creates well-defined absorption
bands. This phenomenon has been studied and exploited by
a number of investigators to realize new types of sensors,
optical filters, and absorbers [1–5]. The goal of this work was
to numerically and experimentally study plasmonic-based
resonant absorbers in the long-wavelength IR (LWIR) band
(8–14 µm) that could be fashioned into small (∼100 µm ×
100 µm × 25 µm) dust particles. The dust particles could
then be used to tailor the reflectivity/emissivity of a surface
or dispersed in air and used for atmospheric sensing
applications.

There are a number of small resonant absorbing “dust
like” structures that could be used to preferentially absorb,
and thus thermally emit, IR radiation at specific wavelengths
including dielectric ring resonators, resonant patch antennas,
and plasmonic-based resonator. These various structures
were compared based on (1) their ability to efficiently absorb
IR energy at selected wavelengths within the 8–14 µm band,
(2) the ability to easily tune the resonant absorption, (3)
ease of fabrication, and (4) manufacturing cost. Based on
these criteria, we chose to investigate, in detail, the relatively
simple surface plasmon-based designs shown in Figure 2.
The building blocks for this design are two thin resonant
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Figure 1: Notional diagram that illustrates the normally smooth
thermal exitance curves from blackbody and graybody objects
compared to the resonant behavior of our “engineered” IR resonant
dust.

cavities, one on the top of Figure 2 and the other on the
bottom. Each cavity is composed of a thin gold ground
plane, a thin dielectric substrate layer (formed from zinc
selenide (ZnSe) in our design), and a subwavelength metallic
grating made from gold. In the middle of the structure is a
relatively thick silicon layer needed for mechanical rigidity.
The symmetry of the top and bottom layers was needed
since the particles, when dispersed, would orient themselves
randomly.

The strong resonant behavior of this design is due
to a combination of two different resonant phenomena.
The first is a surface plasmon resonance that is excited
within the subwavelength gold grating. The second is a
cavity resonance excited in the ZnSe substrate region that
is between the grating layer and the metallic ground plane
layer. By adjusting the thickness of the ZnSe substrate for
a given grating period and duty cycle, a strong absorption
resonance can be excited at any wavelength within the 8–14
micron band. To create small dust particles, a large sample is
diced into small (∼100 µm × 100 µm × 25 µm) particles.

3. Computational Modeling and Design

Two different computational models were employed to
rigorously design and validate the resonant structure shown
in Figure 2. The first method is a fully periodic planar
method called the rigorous coupled wave method. The
second method, finite element method (FEM), was used to
investigate finite-sized particle effects. A brief description
of these two methods along with simulation results are
presented in the next two sections.

3.1. Modeling of Infinitely Periodic Structures Using Rigorous
Coupled Wave Analysis. Two approaches are used extensively

for simulating the electromagnetic properties of infinitely
periodic subwavelength gratings. The first uses effective
media theory to provide closed-form approximations for
the effective dielectric constants as a function of the grating
structure [6]. Although attractive from a computational
perspective, the approximate expressions are accurate only
for gratings whose period is much smaller than the wave-
length of illumination. As the grating period approaches the
wavelength, which is referred to as the resonance regime,
the assumptions on which these closed-form expressions
are based are no longer valid. For our designs, we assumed
grating periods only slightly smaller than the material
wavelength and thus could not accurately utilize effective
media theory.

We instead employed a second approach using a rigorous
electromagnetic model. Although computationally more
difficult, this approach is capable of generating accurate
results for gratings of any period size and shape. Several
rigorous electromagnetic models can be used for this
calculation. We chose the rigorous coupled wave (RCW)
algorithm originally presented by Moharam and Gaylord
[7]. Our specific implementation is based on the enhanced
transmittance matrix approach introduced by Moharam and
Gaylord [7] and later refined by Lalanne [8] and Noponen
and Turunen [9]. For the sake of brevity, we refer the reader
to the references above for details on the RCW method.
While being accurate, the RCW method does assume the
grating structure, shown in Figure 2, is infinite in the
transverse directions. The effect of finite-sized samples is
investigated in Section 3.3.

3.1.1. RCW Simulation Results for Infinitely Periodic Surfaces.
Figure 3 presents typical simulation, results calculated using
the RCW method. In the figure, the reflectivity of the sample
is calculated as a function of wavelength and polarization for
a normally Incident Planewave.

For this simulation the ZnSe substrate thickness was
assumed to be 1.8 µm, the gold grating period was 3.0 µm
with a 50% duty cycle. The gold gratings were assumed to
be 100 nm thick, and the gold ground planes were 300 nm
thick. The electromagnetic material properties of the gold
were determined using the model given in [10]. For the
ZnSe layer, a lossless index of refraction of n = 2.41 was
used in all simulations. The incident field was assumed
to be normally incident from the top. For this design, a
very strong resonance absorption, near-perfect absorption, is
predicted near 9.5 µm for the case of parallel polarization (E-
field polarized along the axis of the grating) and only weak
resonances occur for the case of perpendicular polarization
(E-field polarized perpendicular to the axis of the grating).

3.1.2. Reflectance Sensitivity to Geometrical Parameters.
Given a specific substrate and metallization material, such as
ZnSe and gold, the dust particle’s reflectance can be tuned
by proper selection of the geometrical parameters shown
in Figure 2: specifically, (1) thickness of the ZnSe layer,
denoted by h in Figure 2; (2) grating period, denoted by Λ
in Figure 2; (3) the grating’s duty cycle given by (w/Λ in
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Figure 2: Illustration of our surface plasmon-based IR resonant particles. The gold subwavelength gratings along with cavity resonances
produce distinct resonant absorption phenomenon within the LWIR band.
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Figure 3: Simulation results, using the RCW method, that present the reflectivity at normal incidence within the LWIR band. The reflectivity
as expected is polarization dependent due to the anisotropic nature of the gratings.

Figure 2); (4) thickness of the gold grating layer and gold
ground plane. Assuming the gold layers are thick enough to
prevent transmission (i.e., much thicker than the penetration
depth), the variables given by 1–3 above will have the most
effect on the LWIR reflectance.

In Figure 4, we present the effect of the ZnSe substrate
thickness on the resonant behavior. As the thickness is
increased from 1.5 to 2.5 µm, the resonant dip shifts from 8.3
to 13.2 µm, respectively. Thus the resonant behavior can be
tuned by simply varying the thickness of the ZnSe substrate.

Alternatively, for a given substrate thickness, the resonant
absorption characteristics can be tuned by varying the
grating period and duty cycle. Shown in Figure 5 is the
simulated reflectance of a sample in which the substrate
thickness was fixed at 2.0 µm and the grating period was
varied from 1.0 to 3.0 µm. For this simulation, the duty
cycle was fixed at 50%. While the resonant wavelength clearly
varied with grating period, the change was less sensitive than
varying substrate thickness. Moreover, by just changing the

grating period, with all other parameters fixed, the amplitude
of the resonance would vary considerably. Lastly, we varied
the grating’s duty cycle while holding the substrate thickness
and grating period fixed at 2.0 and 3.0 µm, respectively. As
shown in Figure 6, the grating duty cycle has a large effect on
not only the resonant wavelength but also on the amplitude
and bandwidth of the resonance.

The sensitivity to incident angle was also evaluated using
the RCW code. A typical result for the case of both parallel
and perpendicular polarization is shown in Figure 7. Here,
the simulation results predict that the resonant frequency
for parallel polarization (Figure 7(a)) should slowly increase
as the incident angle increases from normal incidence (0
degrees in the figure) to near grazing angles (80 degrees). It
is interesting to note that for the case of parallel polarization
(Figure 7(a)) the variation in resonant wavelength with inci-
dent angle is relatively small (<1 µm) even with near-grazing
incident angles. For the given application of resonant dust
particles, this is an attractive feature since the orientation of
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Figure 7: RCW predictions illustrating the sensitivity of our resonant structure with incident angle. The plot on the left (a) is for parallel
polarization, while the plot on the right (b) is for perpendicular polarization.

the particles with respect to the incident field cannot be well
controlled.

3.2. Iterative Design. As Figures 4 through 7 demonstrate,
the resonant absorption properties of the structure shown in
Figure 2 have a complicated dependence on a number of geo-
metrical parameters. As a result, it is unlikely that any simple
analytical design equation could be derived and used to
determine an optimal structure for a given desired response.

Consequently, we implemented a numerical iterative design
algorithm. Here the RCW method is used to calculate the full
wave solution for the reflectance as a function of wavelength,
polarization, and angle of incidence for a geometry of a given
substrate thickness, grating period, and duty cycle. An opti-
mization algorithm is then used to refine the geometry until
an objective function is minimized. The objective function
may vary depending on the application, but in most cases
we chose to minimize the total reflectance over some desired
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wavelength band. A number of iterative optimization algo-
rithms could be employed including traditional derivative-
based algorithms, genetic algorithms, or direct pattern search
algorithms. An advantage of both genetic and pattern search
algorithms is that they do not require derivatives, and as
a consequence work well on nondifferentiable, stochastic,
and discontinuous objective functions. Both simple genetic
algorithms and direct pattern search algorithms were imple-
mented and tested for the application of interest here. While
both methods produced comparable results, the pattern
search algorithm was often computationally less expensive.

3.3. Modeling of Finite Grating Effects Using the Finite Element
Method. The RCW method, while accurate and compu-
tationally efficient, assumes the gratings to be infinitely
periodic. For our application, the samples are actually
diced into small (∼100 µm × 100 µm × 25 µm) particles.
Consequently, it is important to understand the effects of
relatively small (<10 wavelengths) finite-sized particles on
the overall effectiveness of the design. To conduct these
simulations we used the commercial EM solver, HFSS from
Ansys. Simulations were conducted using HFSS’s FEM solver
with grating structures that varied from 25 to 100 µm on a
side.

Figure 8 plots the simulated current density on the
surface of a 50 µm × 50 µm × 5 µm plasmonic particle at a
fixed incident wavelength of 10 µm. The spatial distribution
of current is a direct consequence of its finite lateral size and
will affect the total absorbed energy. In Figure 9, we plot
the average reflectance of the same particle as a function
of wavelength. While the total absorption is slightly less
and the resonance wavelength is slightly shifted towards
longer wavelength, the finite-sized particles still behave with
the same general absorption characteristics as the infinitely
periodic predictions described previously.

4. Experimental Fabrication

To fabricate the samples, a thin (80 microns) 2-inch silicon
wafer was first mounted onto a 3-inch (350–500 micron)
silicon carrier wafer using Aquabond 55 Adhesive Products
wax. The carrier wafer was placed on a hot plate at a
temperature of 80◦C. A small amount of wax was smeared
on the surface starting at the center and working outward.
The thin silicon wafer was carefully placed on top of the
wax. A flat glass plate was placed on top of the thin wafer,
followed by a brass weight. This was to keep the silicon
wafer as flat as possible during the mounting procedure.
The hot plate was turned off, and the wax was allowed to
cool to room temperature. Excess wax on and around the
mounted silicon wafer was removed by gently swabbing it
away with a 1% solution of Aqua Clean. The wafer assembly
was placed in a vacuum electron beam evaporator. A blanket
metallization of 300 Å of chromium followed by 2000 Å of
gold was evaporated on to the wafer. The assembled structure
was then moved to another vacuum e-beam evaporator,
and a 1.8-micron-thick layer of ZnSe was evaporated onto
the surface. Depositions were performed at 145◦C, with a
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Figure 8: Current density distribution for a finite-sized resonant
particle. Simulations were conducted using HFSS FEM solver.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
efl

ec
ta

n
ce

6 7 8 9 10 11 12 13 14

Incidence wavelength (μm)

50 microns

50 microns

Grating period 3 μm

Conducting plane

Finite size grating (FEKO)
Infinite array (RCW)

Z

X Y

=

Figure 9: Predicted reflectance curves for a finite-sized particle
compared to the infinitely periodic calculations. The edge effects of
the finite-sized sample are evident but do not significantly alter the
resonant peak.

base pressure of 1 × 10−6. A 120-Å layer of yttrium oxide
(Y2O3) was deposited first to promote adhesion between the
substrate and the ZnSe.

Photolithography on the ZnSe was achieved by first spin
coating the wafer assembly with AZ # 5214 image reversal
photoresist at a speed of 4000 rpm for 40 seconds. This
photoresist was hot plate baked at 110◦C for 2 minutes,
exposed on a JBA vacuum contact aligner for 20 seconds with
a bulb intensity of 4 mW/cm2, hotplate baked (reversal bake)
at 124◦C for 40 seconds, and flood exposed for 25 seconds.
The resist was then developed in AZ 300 MIF photoresist
developer for 60 seconds and rinsed in deionized (DI) water
for 1 minute. The wafer was then dried with nitrogen
gas. The resulting photolithography was inspected under a
microscope for clearing. Prior to loading the wafer assembly
into the e-beam evaporator for the grating structure, a
photoresist cleaning in a barrel plasma asher was performed.
The patterned wafer assembly was placed into the vacuum e-
beam evaporator and a metallization of 300 Å titanium (Ti)
followed by 1000 Å of gold was completed. A metal liftoff
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using acetone, isopropyl, and DI water removed the excess
metal. This fabrication process is graphically illustrated in
Figure 10.

5. Experimental Characterization

Experimental characterization results for samples that were
fabricated using the method described earlier are shown in
Figures 11 and 12. For these samples, the ZnSe substrate
thickness was fixed at 1.8 µm and the linear gold gratings
were spaced 3.0 µm with a 50% duty cycle.

The IR reflectance and emission measurements were
made using a Nicolet 560 Fourier transform infrared (FTIR)
spectrometer with a near-normal incidence reflectivity mod-
ule and an input port for collecting IR emission or photolu-
minescence. The reflectivity was taken at room temperature
as a function of incident polarization. Although the polarized
emission could be easily detected at room temperature, the
signal-to-noise ratio was improved by taking the data at
an elevated temperature. The experimental results, which
closely match the modeled results, demonstrate a strong
resonant absorption and thermal emission near the designed
wavelength.

6. Alternative Polarization Insensitive Designs

One disadvantage of using the resonant particles described
in Figure 2 is their sensitivity to polarization. This reduces
the total absorbed energy by one half. To address this issue,
we explored a number of designs that were less sensitive
to incident field polarization. These structures, shown in
Figure 13, consist of 2D arrays of gold strips (known
commonly as a fishnet structure), metallic patches, and
circular holes. Each of the structures shown in Figure 11
was analyzed using the RCW method. Of those structures
analyzed, the inductive grid array (Figure 13(c)) showed
the most promise. Figure 12 presents numerical simulations
of normal incident reflectance as a function of wavelength.
A strong, nearly perfect, absorption is predicted for both
parallel and perpendicular polarization. Moreover, as in the
previous designs, the resonant wavelength was easily tuned
by simply varying the thickness of the dielectric substrate
layer. It should be noted that the results shown in Figure 14
have not been experimentally validated yet.

7. Conclusions

In this paper, we presented a design methodology to create
small particles characterized by a strong resonant absorption
within the LWIR (8–14 µm) band. Our method combined a
surface plasmon resonance, created using a subwavelength
metallic grating with a dielectric cavity resonance. We
showed that by varying the thickness of the cavity substrate
the resonances could be tuned anywhere within the
LWIR band. Experimental samples were fabricated using
photolithography and experimentally characterized. The
experimental results compared favorably with the calculated
results. We believe that material-by-design particles, such
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Figure 10: Illustration of the fabrication steps.
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(a) Hole array (b) Capacitive patch array (c) Inductive grid array (fishnet)

Figure 13: Designs less sensitive to polarization effects.
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Figure 14: RCW simulations for inductive grid array shown in Figure 11(c). Here as the substrate, assumed to be ZnSe, is varied from 1.75
to 2.5 µm. The resonant absorption wavelength shifts to longer wavelengths; however, the magnitude of the absorption remains near perfect.

as the ones described here, would be useful for a variety
of remote atmospheric sensing applications. In those
applications, which require relatively small particles, a
custom spectral signature with multiple wavelengths would
be achieved by mixing batches of single-wavelength particles
designed for the component wavelengths. But in other
applications, such as calibrated surfaces for hyperspectral
imager testing and training, the surfaces could be larger
and the multiple wavelengths could be designed into a
single surface by implementing a checkerboard subcells with
different grating periods across the surface. By properly
selecting the frequencies and relative areas of the emitting
subcells, the emission spectrum could be designed to mimic
the spectral emission from specific natural surfaces.
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With the prevalence of surveillance systems, face recognition is crucial to aiding the law enforcement com-
munity and homeland security in identifying suspects and suspicious individuals on watch lists. However,
face recognition performance is severely affected by the low face resolution of individuals in typical sur-
veillance footage, oftentimes due to the distance of individuals from the cameras as well as the small pixel
count of low-cost surveillance systems. Superresolution image reconstruction has the potential to improve
face recognition performance by using a sequence of low-resolution images of an individual’s face in the
same pose to reconstruct a more detailed high-resolution facial image. This work conducts an extensive
performance evaluation of superresolution for a face recognition algorithm using a methodology and ex-
perimental setup consistent with real world settings atmultiple subject-to-camera distances. Results show
that superresolution image reconstruction improves face recognition performance considerably at the
examined midrange and close range.
OCIS codes: 100.0100, 100.6640, 100.4995, 100.2980.

1. Introduction

The affordability of surveillance systems has led to
their widespread usage on commercial properties
and for residential monitoring. Consequently, video
footage of criminal activity is often available to
law enforcement to help identify suspects. Therefore,
face recognition software is a crucial tool that the law
enforcement community may use to search watch
lists and criminal databases to identify the suspect
acquired on video. However, typical low-cost surveil-
lance systems have small pixel counts. Furthermore,
the suspect could be far away from the camera, re-
sulting in images with very limited number of pixels
on the face (i.e., low face resolution).

Research studies have shown that while face recog-
nition algorithm performance is dependent on face
resolution, this dependence is highly nonlinear. Boom
et al. [1] examined the effect of resolution on face re-
cognition and observed that performance became se-
verely degraded for face images with sizes less than
32 × 32 pixels. However, performance was observed
to be fairly similar for face images with sizes ranging

from 32 × 32 pixels to 128 × 128 pixels [1], substan-
tiating the highly nonlinear nature of face recogni-
tion performance with respect to face resolution. The
Facial Recognition Vendor Test 2000 [2] also observed
that the evaluated face recognition systems yielded
similar performance for face images with face resolu-
tions of 30 to 60 pixels measured in terms of eye-to-eye
distance, but that performance severely degraded for
some algorithms at an eye-to-eye distance of 15 pixels.
In the authors’ experience of working with law
enforcement agencies, it is not uncommon for faces
in typical surveillance footage from residential and
commercial properties to have resolutions less than
30 pixels in terms of eye-to-eye distance, especially
when the suspect is far away from the camera. There-
fore, the limited face resolution within surveillance
footage is a major obstacle for face recognition soft-
ware. Pennsylvania Justice Network (JNET) states
that low resolution and distance are two of the main
factors that limited face recognition effectiveness of its
statewide implementation of a facial recognition
search system for investigators [3].
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Face recognition continues to be an active area of
research focused on improving performance through
the development of new feature transforms, classifi-
cation techniques, and mathematical frameworks to
handle the large variability of face imagery found in
real life. Many factors contribute to this variability:
illumination, pose, and scale/resolution are several of
the main factors. While research has been predomi-
nantly focused on solving the pose and illumination
challenges for face recognition, some efforts have
been devoted to solving the face resolution problem
through the use of superresolution image reconstruc-
tion, which utilizes a sequence of low-resolution (LR)
images containing the face in the same pose to recon-
struct a high-resolution face image with more de-
tails. Boult et al. [4] proposed a superresolution
method via image warping for face recognition, and
Baker and Kanade [5] proposed hallucinating faces
through a Gaussian pyramid-based method; how-
ever, these works did not conduct a performance eva-
luation to assess the benefit of superresolution for
face recognition. More recently, Wheeler et al. [6] de-
veloped a multiframe face superresolution method
with an active appearance model for registration
and evaluated the face recognition improvement
using the Identix FaceIt software. However, only 138
images (split between six ranges in terms of eye-to-
eye distance) from three test subjects were used in
[6]. Due to the small sample size, the observed im-
provement with superresolution is unlikely to be
statistically meaningful in [6]. Whereas [4–6] per-
form superresolution image enhancement in the
pixel domain prior to the face recognition algorithm,
Gunturk et al. [7] developed an eigenface-domain
superresolution technique for face recognition. The
algorithm of [7] performs superresolution recon-
struction in a low-dimensional face space through
principal component analysis (PCA)-based dimen-
sionality reduction and showed an improvement in
face recognition performance with a minimum
distance classifier in the eigenspace. In contrast
to [4–7], Hennings-Yeomans et al. [8] proposed an
algorithm incorporating face features into super-
resolution as prior information, and Huang et al. [9]
developed a superresolution approach based on
correlated features and nonlinear mappings be-
tween low-resolution and high-resolution features.
Fookes et al. [10] conducted the most recent work
on superresolution for face recognition, evaluating
the performance of two face recognition algorithms
with three superresolution techniques. However, as
in [7–9], Fookes et al. [10] also utilized synthetically
generated LR face images by downsampling the
original high-resolution imagery. Downsampled
face imagery does not accurately depict real-world
compressed surveillance face images at varying
subject-to-camera distances, especially since com-
pression is highly nonlinear with more pronounced
effects on facial details for far subject-to-camera
ranges. Although [10] also used a white Gaussian
noise corrupted version of the downsampled sets,

the added white Gaussian noise does not resemble
compression artifacts. The goal of this work is to con-
duct a comprehensive performance assessment of a
state of the art baseline face recognition algorithm
[11,12] with the pixel-level superresolution method
of Young et al. [13] using a large database containing
videos similar to real-world surveillance footage.

Specifically, the objectives of this work are to
(a) assess the benefit of superresolution for face re-
cognition with respect to subject-to-camera range,
(b) assess face recognition performance using super-
resolved imagery reconstructed using varying num-
bers of LR frames, and (c) evaluate face recognition
performance of individual frames within the LR
sequence as well as the performance of a decision
level fusion of the sequence to compare with super-
resolution face recognition results. The database of
moving faces and people acquired by O’Toole et al.
[14] was used for this study, specifically the parallel
gait video datasets and close-up mug shots. Face re-
cognition performance with the LR and super-
resolved imagery was assessed with the local region
principal component analysis (LRPCA) face recog-
nition algorithm [11,12] developed at Colorado
State University. Correct verification rates are cal-
culated and compared at three face resolutions/
scales in terms of eye-to-eye distance corresponding
to different subject-to-camera distances within the
video footage. Results show that superresolution
image reconstruction significantly improves face
recognition verification rates at the examined mid-
and close ranges, with some improvement at the
far range.

2. Methodology

A. Database

Parallel gait videos and static mug shot images from
the video database of moving face and people [14] are
used for this work. The parallel gait video shows the
subject moving towards the camera from 13.6 m
away to approximately 1.5 m away, providing a large
sequence of face imagery at different face resolutions
fromwhich query sets can be formed. A sample frame
containing the subject at the far range is shown in
Fig. 1. Since faces in the parallel gait videos are ac-
quired from the frontal perspective, the correspond-
ing frontal mug shots are used to form the gallery set.
The resolution of the videos as well as of the frontal
mug shot is 720 × 480 pixels (note that the corre-
sponding pixel count is 345,600 pixels, substantially
less than even one megapixel). The videos were ac-
quired with compression using a Canon Optura Pi
digital video camera. Figure 2 shows (a) close range
face image of a subject, (b) close range face image
downsampled by a factor of 3 to simulate far range
using procedure of [10], and (c) far range face image
of the subject taken from the same video. The down-
sampling procedure of [10] involved convolving the
close range face image with a Gaussian filter of
d∕4 and then downsampling by d, where d is the
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downsampling factor. Note that while the compres-
sion artifacts are not obvious in the close range face
image (simply because facial features consist of
many pixels), the compression distortions are highly
pronounced in the actual far range face image taken
from the same video. Simulating the far range face
image by downsampling, as past studies have done
in examining superresolution for face recognition,
does not closely resemble actual far range face ima-
gery due to the effects of compression. The parallel
gait videos used in this work emulate real-world
compressed surveillance footage and enable a realis-
tic assessment of superresolution benefit for face
recognition.

B. Superresolution

This study used the reconstruction-based super-
resolution algorithm of Young and Driggers [13],
which utilizes a series of undersampled/aliased LR
images to reconstruct an alias-free high-resolution
image. This reconstruction-based superresolution

algorithm consists of a registration stage and a
reconstruction stage. The registration stage com-
putes the gross shift and subpixel shift of each frame
in the sequence with respect to the reference frame
using the correlation method in the frequency do-
main. The reconstruction stage uses the error-energy
reductionmethodwith constraints in both spatial and
frequency domains, generating a superresolved im-
age that improves the high-frequency content that
was lost or corrupted due to the undersampling/
aliasing of the sensor. The resolution improvement
factor of the superresolved image is the square root
of the number of frames used to reconstruct the super-
resolved image. A necessary condition for superreso-
lution benefit is the presence of different subpixels
shifts between frames to provide distinct information
from which to reconstruct a high-resolution image.
The natural movement of the subject in the parallel
gait video provided this necessary subpixel shift.

C. Query Sets

Frame sequences at three different subject-to-
camera distances are extracted from each subject’s
parallel gait video: far range (∼13 m), midrange
(∼9 m), and close range (∼5 m). The face resolutions
(in terms of eye-to-eye distances) corresponding to
the far, mid-, and close ranges are 5–10, 15–20,
and 25–30 pixels, respectively. Three query sets
are constructed for each range: (a) original LR ima-
gery (taken as the first frame within the sequence),
(b) superresolved imagery using four consecutive LR
frames (SR4), and (c) superresolved imagery using
eight consecutive LR frames (SR8). SR4 and SR8 en-
able an assessment of the impact of the number of
frames used for superresolution on face recognition
performance. The resolution improvement factor in
the x and y directions is 2 and 2.8 for SR4 and
SR8, respectively. Consequently, the size of the
SR4 face image is a factor of 2 larger in the x and
y dimensions than the corresponding LR face image;
the size of the SR8 face image is a factor of 2.8 larger
in the x and y dimensions than the LR face image.
A total of nine different query sets (Table 1) are gen-
erated to evaluate the improvement in face recogni-
tion with superresolution; each query set contains
200 subjects with one image per subject.

D. Face Recognition

This study used the state-of-the-art baseline LRPCA
face recognition algorithm developed by Bolme et al.

Fig. 2. (a) Close range face image of a subject, (b) close range face
image downsampled by a factor of 3 to simulate far range using
procedure of Fookes et al. [10], and (c) far range face image of
the subject taken from the same video.

Table 1. Query Set Nomenclaturea

5–10 Pixels 15–20 Pixels 25–30 Pixels

Low-resolution LR5–10 LR15–20 LR25–30
Superresolved
4 frames

SR45–10 SR415–20 SR425–30

Superresolved
8 frames

SR85–10 SR815–20 SR825–30

aTop row represents subject-to-camera range in terms of eye-
to-eye distance.

Fig. 1. (Color online) Sample frame extracted from a subject’s
parallel gait video in the database of moving faces and people
[14]. Subject is at the far range (resulting eye-to-eye distance of
5–10 pixels).
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[11,12]. The high-frequency content recovered in the
superresolved imagery is expected to aid principal
component analysis (PCA)-based methods, since cur-
rent PCA-based algorithms often employ a large
number of basis vectors (on the order of thousands
for this study). As a preprocessing step, all query
and gallery images are cropped and normalized to
256 × 256 pixels through bilinear interpolation using
manually defined eye coordinates. The LRPCA algo-
rithmwas trained using the “The Good, The Bad, and
The Ugly” (GBU) subset of the Multiple Biometric
Grand Challenge, containing a total of 522 subjects.
Training on a separate dataset distinct from the
query and gallery sets avoids biasing the perfor-
mance of the algorithm. The gallery set correspond-
ing to each query set consists of one frontal mug shot
for each subject.

E. Performance Measurement

For each query set and gallery, the output of the
LRPCA face recognition algorithm is a similarity
matrix S containing the similarity measure between
every probe in the query set and every gallery image.
Note that for this work, both the query and gallery
sets contain a single image of each subject (N � 200
subjects total); therefore, the similarity matrix is a
N ×N square matrix with the diagonal elements con-
taining the N match scores and N�N − 1� off-diagonal
elements containing the nonmatch scores.

1. Receiver Operating Characteristic Curves
The similarity matrix is used to compute the correct
verification rates as well as the corresponding false
accept rates (FARs). In the verification model, the
face recognition system is tasked with deciding
whether the person in the probe image pi is the same
as the person in the gallery imagery gj [15]. The de-
cision is made based on the Neyman–Pearson theo-
rem, testing whether the similarity score between pi
and gj exceeds a given threshold t0. The correct ver-
ification rate is computed by tallying the number of
diagonal elements (match scores) that exceed t0, and
the FAR is computed by tallying the number of off-
diagonal elements (nonmatch scores) that exceed t0
[15]. Receiver operating characteristic (ROC) curves
were generated by thresholding the similarity ma-
trix S at various thresholds across the range from
Smin to Smax. For each of the nine query sets listed
in Table 1, a ROC curve was constructed in this
manner.

2. Performance with Respect to Range
To visualize face recognition performance with respect
to subject-to-camera range, the correct verification
rates are plotted with respect to range at commonly
used FARs of 0.01 and 0.05 for LR, SR4, and SR8. Con-
fidence intervals are calculated and overlaid onto the
plots to assess the statistical reliability of the perfor-
mance improvement achieved with superresolution
image reconstruction.

3. Confidence Intervals
To indicate the reliability of the calculated correct
verification rates, 95% confidence intervals are de-
termined using the bootstrap method, specifically
following the procedure for biometrics detailed in
[16]. The bootstrap is a nonparametric approach that
makes no assumptions about the error distribution
and is preferable to parametric techniques when
the underlying distribution is unknown, as is the
case for biometrics. Bootstrap involves resampling
the available data (match scores for this study) many
times with replacement to generate confidence inter-
vals. For this work, the probe set contained one im-
age per subject and the gallery contained one image
per subject for LR, SR4, and SR8 at each range, sa-
tisfying the independent and identically distributed
�i.i.d.� requirement of the bootstrap.

Recall that the output of the LRPCA algorithm is a
similarity matrix S containing scores of the similar-
ity between a probe and all gallery images. Also re-
call that S contains M � N match scores along the
diagonal and N�N − 1� mismatch scores, where N �
200 is the number of subjects. For a given t0, let the
verification rate estimate be defined by the equation

F̂�t0� �
1
M

XM

i�1

1�Xi ≥ t0�; (1)

where X denotes the set of M match scores and 1 is
the indicator function [16]. The bootstrap generates
X� � fX�

1;…; X�
Mg by resampling with replacement,

and then calculates F̂��t0�. This resampling proce-
dure is repeated B times (B � 10; 000 for this work),
generating bootstrap estimates F̂� � �F̂�

1; F̂
�
2;…; F̂�

B�.
The lower and upper bounds of the 95% confidence
interval is determined as values corresponding to
the 2.5th and 97.5th percentile of the histogram of
the B bootstrap estimates F̂�.

4. Face Recognition Performance of Individual
Frames and Decision Level Fusion
To address the question of how face recognition per-
formance with superresolution compares to face re-
cognition performance of individual frames within
the LR sequence as well as to the performance of a
decision level fusion scheme, further analysis was
conducted. Superresolution exploits the additional
spatial information contained in the temporal di-
mension (i.e., multiple frames) to reconstruct a more
detailed face image for recognition, and therefore is
expected to exceed the face recognition performance
of any single frame within the LR sequence. To vali-
date this expectation, face recognition performance
was computed for each of the eight LR frames used
to reconstruct SR8 and compared to face recognition
performance of SR8. Furthermore, a simple fusion
scheme for the LR frame sequence was implemented
by averaging the similarity matrices from the
eight LR frames. Fusion by averaging of similarity
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matrices exploits the spatial information in the tem-
poral domain at the decision level and is expected to
be an upper bound on the face recognition perfor-
mance of any individual frame. Face recognition
performance with superresolved imagery is then
compared to the performance of this decision level
fusion scheme.

A total of 24 query sets (eight query sets per range
corresponding to each of the eight frames in the LR
sequence used to reconstruct SR8; Table 2) was gen-
erated to assess the variation in face recognition per-
formance with respect to individual frames. Note
that the LR sequence is an eight frame clip of the
subject walking towards the camera. Due to the fast
frame rate (30 Hz) and relatively slow speed of the
subjects (walking speed), the change in pose is insig-
nificant across the eight frames in the sequence. At
the far range, since the change in face size across the
eight frames does not exceed a single pixel, the same
eye coordinates in terms of �x; y� pixel locations are
used for all eight frames. At the mid- and close
ranges, face size does enlarge by a few pixels across
the frames; therefore, eye coordinates are manually
picked for all eight frames instead of for just the first
frame as in the far range. Once the similarity matrix
for each query set is computed with the LRPCA algo-
rithm, ROC curves of face recognition performance
with respect to individual frames can be generated.
The decision level fusion method (denoted LRave)
averages the similarity matrices across the eight
frames at each range and generates the ROC curve
using the averaged similarity matrix for comparison
with face recognition using superresolved imagery.

3. Results and Discussion

A. Superresolved Imagery

Superresolved face imagery and original low resolu-
tion face imagery are shown in Fig. 3 at different
ranges. At the far range, the LR image is heavily
pixilated and distorted by compression, yielding a
coarse facial outline and few facial features. Super-
resolution with four and eight frames enhances the
facial outline and some facial details, but compres-
sion artifacts have almost completely eliminated
facial details in the low resolution frames, preventing
significant facial feature enhancement.

As range decreases, the camera captures finer de-
tails and the detrimental impact of compression on
facial features lessens because the size of these fea-
tures is now larger. At the midrange, SR4 and SR8
produce considerable enhancement of the subject’s
facial details. As range continues to decrease to

the close range, superresolution benefit decreases
as facial features become more and more defined in
the low resolution imagery. Although the close range
SR images may not appear significantly enhanced vi-
sually, facial recognition algorithms may still benefit
from superresolution as these algorithms operate on
different principles than the human visual system.

To provide a more objective assessment of the in-
crease in high-frequency content with superresolu-
tion, spectral analysis was conducted using LR and
superresolved face imagery. Let the following equa-
tions denote the cumulative power spectrum in
wavenumber kx and ky, respectively, where F�kx; ky�
is the Fourier transform of the considered image:

S1�kx� �
X
ky

��F�kx; ky�
��2; �2�

S2�ky� �
X
kx

��F�kx; ky�
��2: �3�

For this study, the cumulative power spectrum is com-
puted over the spatial region consisting of the eyes,
which is a critical area for face recognitionalgorithms.
Figure 4 shows the computed kx-domain spectrums
for LR and SR8 eye region at the midrange. The
circled part of the plot in Fig. 4 represents the

Table 2. Query Set Nomenclature for Evaluation of Face Recognition with Respect to Low-Resolution Framea

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8

Far range LR1
5–10 LR2

5–10 LR3
5–10 LR4

5–10 LR5
5–10 LR6

5–10 LR7
5–10 LR8

5–10
Midrange LR1

15–20 LR2
15–20 LR3

15–20 LR4
15–20 LR5

15–20 LR6
15–20 LR7

15–20 LR8
15–20

Close range LR1
25–30 LR2

25–30 LR3
25–30 LR4

25–30 LR5
25–30 LR6

25–30 LR7
25–30 LR8

25–30
aSuperscript denotes frame number, while subscript denotes range in terms of eye-to-eye distance in pixels.

Fig. 3. Low-resolution (LR) imagery and superresolved imagery
(4 frames—SR4, 8 frames—SR8) at eye-to-eye distances of
5–10, 15–20, and 25–30 pixels. All images at all ranges have been
resized to a fixed size for comparison.
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high-frequency band recovered with superresolution
using a sequence of eight aliased LR images.

Furthermore, the enhancement in edge contrast is
demonstrated in Fig. 5, which plots the intensity va-
lues of LR and SR8 at the midrange along a horizon-
tal profile across the eyes. The improvement in edge
contrast is especially noticeable across the pupils
(horizontal axis � �10) in Fig. 5.

B. Receiver Operating Characteristic Curves

ROC curves at the 5–10, 15–20, and 25–30 pixel
eye-to-eye distance are shown in Figs. 6, 7, and 8,
respectively. Each figure contains three ROC
curves corresponding to the LR (red dotted line),

superresolved using four frames (SR4; dashed green
line), and superresolved using eight frames (SR8;
solid blue line) imagery. At the far range, the ROC
curves for SR45–10 and SR85–10 lay slightly but con-
sistently above the ROC curve for LR5–10, suggesting
that face imagery at the far range possessed too few
details for superresolution to provide any substantial
enhancement to aid the LRPCA face recognition al-
gorithm. At the midrange, SR815–20 outperformed
SR415–20, which in turn outperformed LR15–20 across
the FARs from FAR � 0.001 to 0.6; superresolution
effectively enhances facial details at the midrange
to yield a large improvement in face recognition per-
formance over the baseline LR imagery. At the close
range, while both SR425–30 and SR825–30 produced
higher face recognition performance than LR25–30
at all FARs, the improvement is not as large as

Fig. 4. (Color online) Computed kx-domain cumulative power
spectrums of LR eye region and SR8 eye region at the midrange.
The circled part of the plot represents high-frequency band recov-
ered from using a sequence of eight aliased low-resolution frames.
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Fig. 5. (Color online) Pixel intensity value plots of LR and SR8
along a profile across the eye region at the midrange, showing
the improved edge contrast with SR8 in the spatial domain.
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Fig. 6. (Color online) ROC curves at the far range for original low
resolution (LR5–10) query set and the corresponding superresolved
query sets using four (SR45–10) and eight (SR85–10) frames.

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

False Accept Rate

C
or

re
ct

 V
er

ifi
ca

tio
n 

R
at

e

Performance at 15-20 Pixels Eye-to-Eye Distance

LR
15-20

SR4
15-20

SR8
15-20

Fig. 7. (Color online) ROC curves at the midrange for original low
resolution (LR15–20) query set and the corresponding superresolved
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achieved at the midrange since the original imagery
already contains detailed facial features.

C. Performance with Respect to Range

For practical applications, performance at low FARs
is of particular interest; therefore, in verification rate
as a function of range is examined at FAR � 0.01 and
0.05 in Fig. 9. At all FARs, the LR curve exhibits a
slight knee at the midrange; the knee is more pro-
nounced for the SR4 and SR8 curves, signifying that
the change in performance with respect to range is
more nonlinear for SR imagery.

At the far range, the already limited facial details
are distorted by compression, preventing substantial
enhancement by superresolution image reconstruc-
tion. At the midrange where the greatest benefit
from superresolution is observed, the correct verifi-
cation rate is 21.0% for SR415–20 and 27.0% for
SR815–20 compared to 14.5% for LR15–20, resulting
in an improvement of 44.8% and 86.2% at
FAR � 0.01, respectively. At FAR � 0.05, the mid-
range correct verification rate is 37.5% for SR815–20
and 45.0% for SR815–20 compared to 28.5% for

LR15–20, resulting in an improvement of 31.6% and
57.9%, respectively.

A large improvement of the verification rate occurs
from the far range to the midrange, but the improve-
ment is visibly smaller from the midrange to the
close range. For SR8, which produced effective eye-
to-eye distances ∼2.8 times the original size; the ver-
ification rate exhibited only a small improvement
from the midrange to the close range. These results
are consistent with the findings of [1,2] that showed
the improvement in face recognition performance
slowed considerably once the eye-to-eye distance
surpassed approximately 30 pixels.

To generate the confidence intervals shown in
Fig. 9, the procedure described in Subsection 2.E.3
was performed using the similarity matrix S for
LR, SR4, and SR8 at each of the three ranges. For
the far range, although face recognition improves
with superresolution, the confidence intervals over-
lap for LR, SR4, and SR8, suggesting that no signif-
icant benefit is achieved with superresolution. At the
close range, the confidence interval for SR4 exhibits a
partial overlap with that of LR, and the confidence
interval for SR8 exhibits only a slight overlap with
that LR. The small overlaps suggest that super-
resolution improves recognition rates for face recog-
nition with high reliability, especially when using
eight frames. At the midrange, the confidence inter-
val for SR4 partially overlaps with that of LR, and the
confidence interval for SR8 exhibits no overlap at all
with that of LR. The lack of any overlap demonstrates
that the face recognition performance improvement
achieved with superresolution using eight frames is
not only highly reliable, but is also significant for
the midrange where eye-to-eye distance is between
15–20 pixels.

D. Face Recognition Performance of Individual Frames
and Decision Level Fusion

To examine the LRPCA face recognition performance
of individual frames within the LR sequence, the
ROC curves of each LR frame are computed and
shown in Figs. 10–12. The ROC curve of the
simple decision level fusion method derived from
averaging the similarity matrices across the eight
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frames (LRave) at each range is overlaid onto the
plots. Averaging the similarity matrices exploits
the spatial information across the eight frames at
the decision level for face recognition and is com-
pared against face recognition with superresolution
(SR8).

Figures 10–12 show the ROC curves for each of the
8 LR query sets corresponding to different frames at
the far, mid-, and close ranges, respectively. The ROC
curve for the average similarity scores (LRave) across
frames is shown in bold red along with the SR8 ROC
curve shown in bold blue. The ROC curves for the
LR frames exhibit some variation, but tend to be
clustered together and lay within the confidence in-
tervals as computed in Subsection 3.C. Note that
there is no observable ordering of the ROC curves

for LR1 to LR8 from lowest to highest. This verifies
that the scale change across the eight frames as sub-
ject walks towards the camera is minor and does not
produce any patterns in the ordering of the ROC
curves. At the far range, the ROC curve for the first
frame (LR1

5–10) interestingly lay above the seven
other LR frames which closely overlap with each
other. This may be due to the definition of the
eye coordinates based on the first frame, which were
then reused for the remaining seven frames at
the far range. This eye coordinate definition proce-
dure may have produced a slightly more accurate eye
coordinate selection for the first frame than the other
frames, even though the change in eye coordinates
did not exceed an integer pixel across the frames
in the sequence at the far range.
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Fig. 10. (Color online) ROC curves at the far-range for each low resolution frame (superscript 1–8). The ROC curve for LRave is generated
by averaging similarity matrices of the eight individual frames and generating the ROC curve.
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The ROC curves for LRave in general lay above the
ROC curve of any individual LR frame. Since LRave is
a decision level fusion in exploiting the spatial infor-
mation across the eight frames, it is not unexpected
that the ROC for LRave tends to be an upper bound
for the ROC curve of any individual frame. However,
the ROC curve for SR8 lay above the ROC curve
of LRave at all three ranges, showing that super-
resolution image reconstruction is a more effective
method in exploiting the spatial information across
the temporal dimension to improve face recognition
performance.

To provide a quantitative measure of overall face
recognition performance of the LRPCA face recogni-
tion algorithm using superresolved and LR imagery,
the area under the curve (AUC) is computed for each
ROC curve in Figs. 10–12 across FAR ∈ �0; 1� and ta-
bulated in Table 3. Note that the maximum possible
value for the AUC is 1. The AUCs for LR are gener-
ally consistently close to each other across frames
1–8 at the three ranges. The “best frame” in terms
of AUC is the 1st frame for the far range, 8th frame
for themidrange, and 6th frame for the close range as
underlined in Table 3. The AUC for SR8 is 5.1% lar-
ger than the best frame at the far range, 7.65% larger
than the best frame at the midrange, and 5.04% lar-
ger than the best frame at the close range. Further-
more, the AUC for SR8 is 14.36% larger than LRave at
the far range, 2.88% larger than LRave at the mid-
range, and 1.38% larger than LRave at the close

range. Note that although the AUC for SR8 is only
a few percent better than LRave at the mid- and close
ranges, the increase is still substantial as the AUC
was computed over the whole range of FARs
(FAR ∈ �0; 1�); typically, ROC curves for detection/
classification algorithms in a given experiment over-
lap at higher FARs (ex. FAR > 0.1). Therefore, the
results of Table 3 show that superresolution provides
improvement in LRPCA face recognition perfor-
mance compared to any frame as well as to the deci-
sion level fusion across the eight frames.

Using the best frames in terms of AUC fromTable 3
at each range (denoted LR�), verification rates with
respect to range are plotted in Fig. 13 at FAR of 0.01
and 0.05. SR8 outperforms LR� as well as LRave, with
small to no overlap of confidence intervals at themid-
and close ranges. At the midrange, the verification
rate is 0.45 for SR8, 0.37 for LRave, and 0.31 for
LR�, representing a 21.6% improvement and a 45.2%
improvement over LRave and LR� at FAR � 0.05, re-
spectively. At the close range, although the perfor-
mance improvement achieved with SR8 is not as
significant as the midrange, the benefit of super-
resolution is still substantial.

For surveillance systems on residential and com-
mercial properties where low cost cameras are
prevalent, faces of individuals captured on camera
are commonly between 15 and 30 pixels across in
terms of eye-to-eye distance which correspond to
the examined mid- and close ranges. Superresolution

Table 3. Area under the Curves for LRi, Where i ∈ �1;8� Denotes the Frame Number, AUC for LRave (Computed from the ROC of the Average
Similarity Scores across the Eight Frames), and AUC for SR8 at Far, Mid-, and Close Rangesa

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LRave SR8

Far range 0.6200 0.5553 0.5339 0.5655 0.5311 0.5474 0.5583 0.5566 0.5697 0.6516
Midrange 0.7529 0.7514 0.7557 0.7542 0.7467 0.7411 0.7625 0.7756 0.8115 0.8349
Close range 0.7559 0.7428 0.7503 0.7352 0.7584 0.7823 0.7805 0.7679 0.8105 0.8217

aUnderlined numbers denote the best frame in terms of AUC at each range.
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is expected to provide significant benefits in enhan-
cing the LR face images and improving facial recog-
nition performance.

4. Conclusion

Using a video database similar to real world surveil-
lance footage, this study shows that superresolution
provides considerable benefits for the state of the art
baseline LRPCA face recognition algorithm at the
examined mid- and close ranges. In surveillance ap-
plications, low-cost cameras and oftentimes the far
distance of individuals result in a very limited num-
ber of face pixels, severely affecting face recognition
performance. Superresolution image reconstruction
can be used to enhance the high-frequency content
of low resolution surveillance imagery, improving
face recognition performance and potentially aiding
the nation in law enforcement and homeland secur-
ity applications.

The authors thank Professor Ross Beveridge,
David Bolme, Stephen Won, and Martha Givan for
their help, as well as the reviewers for their valuable
comments and suggestions.
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We present an automatic target recognition algorithm using the recently developed theory of sparse re-
presentations and compressive sensing. We show how sparsity can be helpful for efficient utilization of
data for target recognition. We verify the efficacy of the proposed algorithm in terms of the recognition
rate and confusion matrices on the well known Comanche (Boeing–Sikorsky, USA) forward-looking IR
data set consisting of ten different military targets at different orientations. © 2011 Optical Society of
America
OCIS codes: 100.0100, 100.5010, 100.3008, 330.5000.

1. Introduction

The objective of an automatic target recognition
(ATR) algorithm is to detect [1] and classify each tar-
get image into one of a number of classes [2]. The re-
cognition algorithm may consist of several stages.
For example, in the first stage a target is detected
on the entire image; in the second stage, background
clutter is removed; in the third stage, a set of features
is computed and finally, in the fourth stage, classifi-
cation is done by means of a classifier. In this paper,
we mainly focus on the last two stages.

Target recognition using forward-looking IR
(FLIR) imagery of different targets in natural scenes
is difficult due to large variations in the thermal sig-
natures of targets. Many ATR algorithms have been
proposed for FLIR imagery. Wang et al. proposed a
modular neural-network-based ATR algorithm in
[2]. In their algorithm, several neural networks are
trained, each optimized for a local region in the im-
age, whose classification decisions are combined to
determine the final classification. Wavelet-based vec-
tor quantization was used for FLIR ATR in [3] by
Chan and Nasrabadi, where a discriminative diction-
ary was created in the wavelet domain using learn-

ing vector quantization. A recognition method based
on hidden Markov tree that uses a Karhunen–Loeve
representation was proposed by Bharadwaj and Car-
in in [4]. See [5] for an excellent survey of papers and
experimental evaluation of FLIR ATR. The algo-
rithms evaluated in [5] include convolutional neural
network (CNN), principal component analysis
(PCA), linear discriminant analysis (LDA), learning
vector quantization (LVQ), modular neural net-
works (MNN), and two model-based algorithms,
using Hausdorff metric-based matching (H-M) and
geometric hashing (G-H).

FLIR images often contain unwanted thermal sig-
natures of the background clutter whose characteris-
tics change with environment such as changes in fog,
rain, and heat, which can make target detection and
recognition difficult for automated as well as human
observers. Recently, Wright et al. [6] introduced a
sparse-representation-based classification (SRC) al-
gorithm for face recognition, which is claimed to be
robust to varying expressions, illumination, occlu-
sion, and disguise, and has been shown to outperform
many state-of-the-art algorithms. This approach is
based on the theories of compressive sensing (CS)
and sparse representation (SR). The idea is to create
a dictionary matrix of the training samples as col-
umn vectors. The test sample is also represented as
a column vector. Different dimensionality-reduction

0003-6935/11/101425-09$15.00/0
© 2011 Optical Society of America
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methods are used to reduce the dimensions of both
the test vector and the vectors in the dictionary.
One such approach for dimensionality reduction is
using random projections [6]. Random projections,
using a generated sensing matrix, are taken of both
the dictionary matrix and the test sample. It is then
simply a matter of solving an ℓ1 minimization pro-
blem in order to obtain the sparse solution. Once
the sparse solution is obtained, it can provide infor-
mation as to which training samples the test vector
most closely relates to. Furthermore, it was shown
that if the sparsity of the solution is properly har-
nessed, the choice of features (e.g., dimensionality-
reduction method) is no longer critical. The number
of features for a given class and the sparse solution
become critical.

Motivated by the SRC algorithm, in this paper,
we investigate the effectiveness of SR and CS for
the recognition of FLIR target images. In particular,
we exploit the inherent block structure of the sparse
solution induced by ℓ1 minimization. Furthermore,
our method utilizes a redundant dictionary that in-
cludes training data at various azimuth angles,
hence achieving orientation invariance. As a result,
our algorithm has the ability to identify targets at
different orientations.

This paper is organized as follows: the theory of
sparse representation along with its use for ATR is
presented in Section 2. Its extensions based on block
sparsity (BS) are presented in Section 3. In Section 4,
we present some experimental results on a FLIR
data set consisting of ten different targets. Section 5
concludes the paper with a brief summary and
discussion.

2. Recognition Based on Sparse Representation

Following [6,7], in this section we briefly describe the
use of SR and CS for FLIR ATR. Figure 1 shows the
overview of our method.

A. Sparse Representation

Suppose that we are given L distinct target classes
and a set of n training images per class. We identify
an l × p gray-scale image as anN-dimensional vector
that can be obtained by lexicographically stacking its
columns, where N ¼ lp. Let Ak ¼ ½xk1;…; xkn� be an
N × n matrix of training images from the kth class.
That is, Ak represents the dictionary for class k.
Define a new matrix or dictionary, A, as the concate-
nation of subdictionaries from all the classes as

A ¼ ½A1;…;AL� ∈ RN×ðn:LÞ

¼ ½x11;…; x1njx21;…; x2nj……jxL1;…; xLn�:

We consider an observation vector, y ∈ RN , of un-
known class as a linear combination of the training
vectors as

y ¼
XL

i¼1

Xn

j¼1

αijxij ð1Þ

with coefficients αij ∈ R. The above equation can be
more compactly written as

y ¼ Aα; ð2Þ
where

α ¼ ½α11;…; α1njα21;…; α2nj……jαL1;…; αLn�T ð3Þ

and :T denotes the transposition operation. Now we
make an assumption that given sufficient training
samples of the kth class, Ak, any new test image y ∈
RN that belongs to the same class will approximately
lie in the linear span of the training samples from the
class k. This implies that most of the coefficients not
associated with class k in Eq. (3) will be close to zero.
Hence, α is a sparse vector.

In order to represent an observed vector, y ∈ RN ,
as a sparse vector, α, one needs to solve the system
of linear equations in Eq. (2). Typically, L:n ≫ N,

Fig. 1. (Color online) Overview of our approach using SR. Test target chip is represented as a linear combination of image chips from a
dictionary containing all training images.
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whichmakes the system of linear equations in Eq. (2)
underdetermined and has no unique solution. It has
been shown that if α is sparse enough and A satisfies
certain properties, then the sparsest α can be recov-
ered by solving the following optimization problem
[8–12],

α̂ ¼ argmin
α0

∥α0∥1 subject to y ¼ Aα0; ð4Þ

where ∥x∥1 ¼ P
i jðxiÞj. This problem is often known

as basis pursuit and can be solved in polynomial time
[13]. Note that the ℓ1 norm is an approximation of the
ℓ0 norm [14]. The approximation is necessary be-
cause the optimization problem in Eq. (4) with the
ℓ0 norm (which seeks the sparsest α) is NP-hard
and is computationally difficult to solve. In the case
in which noisy observations are given, basis pursuit
denoising (BPDN) can be used to approximate α,

α̂ ¼ argmin
α0

∥α0∥1 subject to ∥y − Aα0∥2 ≤ ε; ð5Þ

where we have assumed that the observations are of
the following form:

y ¼ Aαþ η ð6Þ
with ∥η∥2 ≤ ε. One condition that is required for both
the ℓ0 norm based method and the ℓ1 norm based
method to have the same solution and for Eq. (5)
to stably approximate the sparsest near solution of
Eq. (6) is known as the restricted isometry property
(RIP) [10–12]. A matrix, A, is said to satisfy the RIP
of order K with constants δK ∈ ð0; 1� if

ð1 − δKÞ∥v∥22 ≤ ∥Av∥22 ≤ ð1þ δKÞ∥v∥22 ð7Þ

for any v such that ∥v∥0 ≤ K . Also, in certain cases,
greedy algorithms, such as orthogonal matching
pursuit [15], can also be used to recover sparse repre-
sentations of images.

B. Feature Extraction

For a recognition method to work well, one needs to
find good features that can separate the classes in
lower dimensional spaces, often known as the feature
space. The method presented in the previous section
can be easily extended to the case in which different
features are used. Let G ∈ R ~M×N be a matrix with
~M ≤ N that maps the vectors from the original space
to the feature space. Here we have assumed that the
transformation is approximately a linear operation.
Some examples of G include random projection (RP)
matrix, downsampling matrix, PCA dimensionality
reduction matrix or some other orthogonal basis such
as wavelet transform matrix. Equation (6) can be
rewritten as

~y≐Gy ¼ GAαþ ~η ∈ R ~M; ð8Þ
where ~η ¼ Gη. In general, ~M is chosen to be much
smaller than N. This in turn implies that the system

of Eqs. (8) will be underdetermined. So long as α is
sparse enough and GA satisfies certain conditions,
one can approximate α by solving the following
problem:

α̂ ¼ argmin
α0

∥α0∥1 subject to ∥~y −GAα0∥2 ≤ ~ε; ð9Þ

with ∥~η ∥2 ≤ ~ε.

C. Sparse Recognition

Given an observation vector y from one of the L
classes in the training set, we compute its coefficients
α̂ by solving either Eq. (4) or Eq. (5). We perform clas-
sification based on the fact that high values of the
coefficients α̂ will be mainly associated with the col-
umns of A from a single class. We do this by compar-
ing how well the different parts of the estimated
coefficients, α̂, represent y. The minimum of the re-
presentation error or the residual error is then used
to identify the correct class. The residual error of
class k is calculated by keeping the coefficients asso-
ciated with that class and setting the remaining coef-
ficients not associated with class k to zero. This can
be done by introducing a characteristic function,
χk∶Rn → Rn, which selects the coefficients associated
with the kth class as follows:

rkðyÞ ¼ ∥y − Aχkðα̂Þ∥2: ð10Þ
Here, the vector χk has value one at locations cor-

responding to class k and zero for other entries. The
class, d, that is associated with an observed vector is
then declared as the one that produces the smallest
approximation error:

d ¼ argmin
k

rkðyÞ: ð11Þ

D. Image Quality Measure

From the previous discussion, one would expect the
solution α to be sparse and that it should belong to
only one class. For instance, the test image from Tar-
get 1 should only belong to the corresponding Target
1 class rather than a combination of different classes.
To measure the quality of the coefficient vector, α, the
notion of the sparsity concentration index (SCI) [6]
has been introduced. The SCI of a coefficient vector,
α ∈ RðL:nÞ, is defined as

SCIðαÞ ¼
L:max ∥χiðαÞ∥1

∥α∥1 − 1

L − 1
: ð12Þ

SCI takes values between 0 and 1. SCI values close
to 1 correspond to the case in which the test image
can be approximately represented by using only
images from a single class. In this case the test vector
has enough discriminating features of its class and
hence has high quality. If SCI ¼ 0, then the coeffi-
cients are spread evenly over all classes. So the test
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vector is not similar to any of the classes and hence is
of poor quality.

3. Block-Sparsity-Based Recognition

The following problem is related to Eq. (5) and is
often known as the least absolute shrinkage and
selection operator (LASSO) [16]:

min ∥y − Aα0∥22 subject to ∥α0∥1 ≤ τ; ð13Þ

where τ > 0. The constrained optimization problems
[Eq. (5) and (13)] are closely related to the following
unconstrained optimization problem:

min
1
2
∥y − Aα0∥22 þ λ∥α0∥1; ð14Þ

where λ is a nonnegative parameter. The Lagrange
multiplier, λ, is related to the LASSO parameter, τ,
of the constraint in Eq. (13) and to the reciprocal of
the parameter of the constraint in Eq. (5). Hence, for
appropriate selections of ε, λ, and τ, the solutions of
Eqs. (5), (13), and (14) coincide [17]. That is, these
formulations can all be used to identify sparse
approximate solutions to the underdetermined
system (2).

It has been observed that the LASSO method
tends to select a single sample from a group of corre-
lated training samples [18]. However, in our applica-
tion, we have L target classes. Hence, our dictionary,
A, consists of blocks of training samples correspond-
ing to L different targets. Thus, the resulting sparse
coefficients, α̂, occur in a block. This means that we
can use a regularization method that selects an en-
tire block of correlated training samples belonging to
the same class. This can be achieved by adapting the
following relaxation:

α̂ ¼ min ∥a1∥2 þ ∥a2∥2 þ…þ ∥aL∥2
subject to ∥y − Aα0∥ ≤ ε;

ð15Þ

where ai ¼ ðα0ði−1Þnþ1; α0ði−1Þnþ2;…; α0ðinÞÞ for i ¼ 1; 2;…;

L. Note that this method requires the labels of each
group in A. This presents no obstacles, because the
label of each training sample is known a priori. It
is shown in [19] that the solution of Eq. (15) satisfies

∥α − α̂∥2 ≤ C1K−1
2∥α − αK∥2;J þ C2ε;

provided that ∥y − Aα∥2 ≤ ε and δ2KjJ <
ffiffiffi
2

p − 1,
where C1 and C2 are some constants, αK denotes
the best block K sparse approximation to α, and
∥α∥2;J ¼ P

L
i¼1 ∥ai∥2, and J ¼ fJ igLi¼1 is the partition

of the set f1; 2;…;Lg, that is, ⋃L
i¼1J i ¼ f1; 2;…;Lg

and
P

L
i¼1 jJ ij ¼ n:L. Here the block-restricted isome-

try constant δKjJ is defined as the smallest δK jJ such
that A satisfies

ð1 − δKjJ Þ∥v∥22 ≤ ∥Av∥22 ≤ ð1þ δKjJ Þ∥v∥22 ð16Þ

for any v that is block K sparse over J . It follows that
δK jJ ≤ δK , where δK is the conventional restricted iso-
metry constant [e.g., Eq. (7)], corresponding to nonBS
vectors [19]. This, in turn, implies the existence of
improved performance guarantees compared to
BPDN [19,20]. For this reason, in our ATR algorithm,
we use Eq. (15) to harness the underlying BS struc-
ture of α. In recent years, an enormous amount of
research has been done regarding related regulariza-
tion methods. It is also possible to use grouped
LASSO [21,22] and elastic net [18] for regularization
in our recognition method. Note that the reconstruc-
tion of BS signals from the compressive measure-
ments has been studied extensively in [20,23]. Our
ATR algorithm based on SR is summarized in Fig. 2.

4. Experimental Results

In this section, we present some simulation results of
different ATR methods promoting sparsity on the
Comanche (Boeing–Sikorsky, USA) FLIR data set
consisting of different military targets at different or-
ientations. The images are of size 40 × 75 pixels. In
all of our experiments, the dimension of each target
image (chip) was reduced from 40 × 75 to 16 × 16 un-
less otherwise stated. A number of approaches have
been suggested for solving BS-promoting optimiza-
tion problems (15). In our approach, we employed
a highly efficient algorithm that is suitable for large
scale applications, known as the spectral projected
gradient (SPGL1) algorithm [17]. The threshold va-
lue for SCI was set equal to 0.15. The performance of
our algorithm is compared with that of several differ-
ent methods reported in [2,3,5]. Our algorithm is also
tested using several features, namely PCA features,
RP features, two-dimensional Haar wavelet features,
and downsampled images.

A. Data Set

In our data set, there are 10 different vehicle targets.
We will denote these targets as TG1;TG2;…;TG10.
For each target, there are 72 orientations, corre-
sponding to the aspect angles of 0°; 5°;…; 355° in azi-
muth. The range to all the targets is given so that all
the target chips are analyzed at 2km. The data con-
sist of a training set and a test set. We will refer to
the training set as the SIG set and the test set as the
ROI set. The SIG data set has about 13,816 target
chips, while there are 3353 images in the ROI data

Fig. 2. SR-based ATR algorithm.
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set. The SIG data set consists of images that were
collected under very favorable conditions. The SIG
data set contains 874 to 1468 images per target class
spanned over 72 different aspects. In Fig. 3, we dis-
play the side view of all the 10 targets present in the
SIG set.

The ROI set consists of only five targets, namely,
TG1, TG2, TG3, TG4, and TG7. The target images
for the ROI set were taken under less favorable con-
ditions, such as targets with different weather condi-
tions, in different backgrounds, in and around
clutter; hence these data are very challenging. There
are 577 to 798 images for each of these five target
classes. Some of the target chips from the ROI data
set are shown in Fig. 4. All the images in the SIG and
ROI sets were normalized to a fixed range with the
target put approximately in the center. The orienta-
tion in the ROI set was given very coarsely; every 45°.

B. Results on SIG Data Set

In the first set of experiments, the training and test
images were chosen from the SIG data set. For train-
ing, we randomly chose 11 target chips for each tar-
get per aspect angle, called TRAIN-SIG. Because we
have a total of 72 aspects (i.e., 0°; 5°;…; 355°) for each
target, we used a total of 11 × 72 ¼ 792 targets per
class. Hence, the resulting dictionary, A, is of size
256 × 7920. Another set of 1000 targets, disjoint from
the training data, called TEST-SIG, was used for
testing. We solve the following problem favoring BS
based on target class per aspect:

α̂ ¼ min ∥a1∥2 þ ∥a2∥2 þ…þ ∥a720∥2
subject to ∥y − Aα0∥ ≤ ε;

ð17Þ

where ai ¼ ðα0ði−1Þnþ1; α0ði−1Þnþ2;…; α0ðinÞÞ for i ¼ 1; 2;…;

11. Once the BS vector, α, is found, we compute the

reconstruction error using Eq. (10) and identify the
novel target chip, y, using Eq. (11). We applied this
BS-based algorithm to various features on the
TRAIN-SIG data set. Examples of different features
extracted for this experiment are shown in Fig. 5.

The probabilities of correct classification for
these experiments are 98.48%, 99.18%, 99.96%,
and 99.95% for the downsampled, RP, PCA, andHaar
wavelet features, respectively. All the features per-
formed approximately the same for these experi-
ments. The confusion matrices [24] corresponding
to these experiments are shown in Figs. 6(a)–6(d).
C. Results on ROI Data Set

In the second set of experiments, we randomly se-
lected 11 targets per aspect angle from the SIG data
set for training. The resulting dictionary, A, is of size
256 × 7290. We randomly selected 1000 images from
the ROI set for testing, called the TEST-ROI set.
Again, we extracted various features and applied our
BS-based algorithm to these features as was done for
the TRAIN-SIG data set. The probabilities of correct
classification for these experiments are 75.10, 76.30,
78.89, and 76.45% for the downsampled, RP, PCA,
and Haar wavelet features, respectively. The PCA
features gave the best performance. The confusion
matrices corresponding to these experiments are
shown in Figs. 7(a) and 7(d). In these experiments,
the TEST-ROI set contained only five targets, but
all of the outputs were active. Note that we have
included five rows with zeros for clarity due to the
fact that five other targets are not present in this
data set.

The best recognition results on the TEST-SIG and
TEST-ROI data sets were obtained by using the PCA
features. Performance of our algorithm using various
features on TEST-SIG and TEST-ROI is compared in
Fig. 8. Also, we report the performance of different
techniques [2,3,5] on these data sets in Table 1. As
can be seen from the table, our method achieves re-
cognition rates of 99.96% and 78.89% on TEST-SIG

Fig. 3. Side view of all 10 targets present in the SIG data set.

Fig. 4. Some sample target chips from the ROI data set.

Fig. 5. Examples of different features used in this paper:
(a) original target chip, (b) Haar wavelet features, (c) downsampled
image, (d) PCA features, (e) random projection.
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and TEST-ROI, respectively, and it outperforms
other methods such as CNN, MNN, PCA, LVQ,
LDA, H-M and G-H [2,3,5]. Also, note that our meth-
od is more general than the competing methods pre-
sented in [2,3]. In their methods, to deal with the
background artifacts, they use several rectangular
windows of different sizes based on the ground truth
silhouette computer-aided design models. As a re-
sult, their performance significantly depends on
the choice of windows. In contrast, the method pre-
sented here does not require any windowing or prior
knowledge about the size of the targets.

D. Target Pose Estimation

Because the dictionary, A, contains target chips at
different known orientations, we can reliably esti-
mate the pose of a target from the test set. To illus-
trate this, consider a test target chip shown in Fig. 9.
This chip belongs to TG1, and its orientation is 5°.
The values of the sparse coefficients obtained by sol-
ving a BS-promoting problem are shown at the bot-
tom of Fig. 9. Using the correct labels of columns in A

and the sparse coefficients, one can identify the
corresponding aspect angle of this target.

Note that such pose information can be utilized to
exclude the background in each target chip as was
done in [5]. Furthermore, if we know the possible or-
ientation of a target, we can validate the target type
by using some features unique to the target in that
orientation (see [3,5] for details).

E. Recognition Rate versus Feature Dimension

In this section, we show how the performance of our
algorithm changes as we change the feature dimen-
sion. For this experiment we again randomly selected
11 targets per aspect angle from the SIG data set for
training. Another set of 1000 targets, disjoint from
the training data that were used for testing. PCA fea-
tures, was used for this experiment. Figure 10 shows
the recognition rates for this experiment correspond-
ing to various feature dimensions. As can be seen
from this figure, the recognition rate increases as
we increase the feature dimension. Above the fea-
ture dimension of 256, the recognition rate stays

Fig. 6. (Color online) Confusion matrices corresponding to the SIG data set using different features: (a) downsampled, (b) random
projection, (c) PCA, (d) Haar wavelet.
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approximately the same. This is no surprise because
it has been observed by many researchers that, in
practice, features (e.g., number of compressive mea-
surements) of the order of 3 to 5 times the number of
sparse coefficients suffice for a good recovery [25,26].
From our assumption that any test image that be-
longs to class k will approximately lie in the linear
span of the training samples from the same class,
and because each class per aspect angle contains
11 training images, our method requires the feature
dimension to be more than 5 × 11 ¼ 55 for good re-
covery of sparse coefficients. Hence, increasing the
feature dimension more than is required by the ℓ1
minimization will not necessarily improve the qual-
ity of recovered sparse coefficients. This in turn im-
plies that after a certain feature dimension, the
recognition rate will approximately stay the same
[27]. Also, from the previous experiments, we see
that the BS-based recognition algorithm gives ap-
proximately the same performance when different
features are used, provided that the dimension of

Fig. 7. (Color online) Confusion matrices corresponding to the ROI data set using different features: (a) downsampled, (b) random
projection, (c) PCA, (d) Haar wavelet.

Fig. 8. (Color online) Recognition results on the TEST-SIG and
TEST-ROI sets using different features.
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the features is kept high enough. This shows that the
choice of features is not critical but the dimension of
features is.

5. Discussion and Conclusion

We have developed a framework for ATR using the
theory of SR and CS. This entails solving a BS-
promoting optimization problem on various features.
Various experiments on the Comanche (Boeing–
Sikorsky, USA) FLIR data set have shown promising
results.

Several future directions of inquiry are possible
considering our new approach to ATR. For instance,
instead of using the ℓ1 minimization, one can consid-
er greedy pursuits such as orthogonal matching pur-
suit and compressive sampling matching pursuit
[15,28,29]. Greedy pursuits are known to converge
much faster than optimization-based methods and
have the same theoretical guarantees as some of the
optimization-based methods. Even though, in this
paper, we took a reconstructive approach to diction-
ary learning for ATR, it is possible to learn discrimi-
native dictionaries for the task of target recognition
[30,31]. Note that the sparsity-motivated methods
for ATR presented here for FLIR images can be
easily extended to the other ATR problems based
on ladar, underwater optical imagery [32], or syn-
thetic aperture radar imagery.

Fig. 9. (Color online) Target orientation detection. Dictionary matrix A contains training images with known orientation. This can be
used to identify the aspect angle of a test target.

Fig. 10. (Color online) Recognition rate versus feature
dimension.

Table 1. Recognition Rates (in %) for Different Methods

Methods BS CNN4 LVQ MNN PCA LDA H-M G-H

TEST-SIG 99.96 95.16 99.72 95.49 95.44 86.92 93.73 80.24
TEST-ROI 78.89 59.25 75.12 75.58 52.17 50.32 62.86 50.09
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1 Introduction
As sensor technology, network communication, computing
power, and digital storage capacity have all dramatically
improved, still and video imageries have become the most
common and versatile forms of media for capturing, anal-
yzing, and disseminating a variety of information. Visible
cameras are the prevailing imaging sensors because they
are relatively cheap, easy to use, and capable of producing
high-quality imagery under favorable conditions. However,
visible cameras can be severely affected by common envi-
ronmental factors such as darkness, shadows, fog, clouds,
rain, snow, and smoke. Infrared (IR) imaging systems may
overcome or alleviate some of these problems, but they are
subject to a number of limitations of their own. IR-specific
difficulties include a much lower sensor resolution; total
loss of nonthermal but important visual features (such as
color and text); blockage by visually transparent thermal
signal shields (such as car windshields and glass doors);
and very low thermal contrast between targets and back-
ground under certain combinations of ambient and target
temperatures. Due to these highly complementary strengths
and limitations of visible and IR cameras, more advanced
target detection and tracking systems may want to acquire
and process both visible and IR imageries concurrently
and jointly for critical surveillance and force protection
applications.

To study the usefulness of fusing visible and IR imageries
for detecting and tracking moving targets, we have relied on
a large collection of concurrent color visible and long-wave
IR (LWIR) video sequences that are officially referred to as
the Second Dataset of the Force Protection Surveillance
System (FPSS).1 These FPSS video sequences were col-
lected using the Sentry Personnel Observation Device
(SPOD) that includes a LWIR microbolometer and a color
visible camera. The LWIR images were acquired with a focal
plane array (FPA) of 320 × 240 pixels in resolution, while
the color visible images were captured at the resolution of
460 TV lines. Both the original color visible and LWIR

images were cropped and scaled to a common image size
of 640 × 480 pixels, in order to attain a coarse level of cor-
egistration between the corresponding color-LWIR images
captured at any given time.

Image fusion can be performed at several different levels.2

At the lowest levels, the raw image data can be fused. This
can either be performed on the original signal or, more likely,
after the image has been preprocessed and the resulting pixel
values are used. Pixel-level fusion is very common due to
its simplicity and universality, and it is the focus of this
work as well. At higher levels, feature-based detection uses
structural image characteristics, such as edges and corners,
to enhance the image. For example, one could extract the
edge information from a pair of images using Sobel filter
and fuse the images based on the edge information.
However, this approach is much more application-specific,
often requiring an understanding of the image, itself, either
through direct human intervention or automatic object clas-
sification algorithms. Therefore, this approach requires much
more complex computation, complicated training methods,
and nonreal-time intervention. One example of a higher
level fusion system uses Bayesian analysis to sum the prob-
abilities of detected human silhouettes falling within each
pair of visible and infrared images. Oftentimes, detections
are based on whether the probability exceeds a predefined
threshold.3 For a stationary camera installed in a specific set-
ting, training such a system may be feasible because its back-
ground does not vary significantly. At the highest level of
image fusion, symbolic fusion methods are often heavily
rule-based and rely on a lot of prior or external knowledge
to perform the image fusion. Nonetheless, symbolic image
fusion methods can carry similar tradeoffs as the fusion
methods at the feature-level.

There are many ways to measure performance of image
fusion algorithms, including subjective analysis, complex
similarity metrics, signal-to-noise ratio (SNR), and tracking
performance. Motwani et al. suggested parameters for sub-
jective analysis, but they concluded that subjective measures
were not particularly helpful for tracking systems, except in
the case of incorporating human feedback into the detection
loop.4 Cvejic et al. discussed a number of objective similarity0091-3286/2013/$25.00 © 2013 SPIE
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metrics, including the Piella metric, Petrovic metric, and
Bristol metric.5 The Piella metric measures structured simi-
larity (which is based on luminance, contrast, and structure
information) over local window regions and then averages
these similarity measures over all windows. Weighting is
given to the relative importance of each input image toward
the fused image, window by window. The Petrovic metric
specifically evaluates edge structure (using a Sobel edge
operator) by determining the strength of edge information
retained from each of the original images in the fused image.
The Bristol metric, in contrast to the Piella metric, uses a
slightly different weighting scheme based on the ratio of
covariances between the original and fused images. Cvejic
et al. compared the tracking performance of a particle filter
based on these objective metrics and found that the tracking
performance was actually worsened by the fusion of images.
Mihaylova et al., of the same research group, later adopted
a performance metric of normalized overlapping ground
truth and tracking system bounding boxes in their work.6

Their results showed that IR images alone performed just
as well or better than most fusion algorithms (including
contrast pyramid, dual-tree complex wavelet transform, and
discrete wavelet transform) in tracking, while visible spec-
trum images lagged behind under harsher conditions like
occlusions.

There are many possible methods of tracking a moving
target, including background subtraction, optical flow, mov-
ing energy, and temporal differencing. Because the FPSS
dataset was collected with a stationary SPOD with minimal
background interference, we decided to use an existing FPSS
tracker,7 which is based on background subtraction method,
to examine the tracking performance of various image fusion
methods. Instead of the FPSS tracker, one of many other
moving target tracking algorithms may be used for a similar
study, as well. For instance, Trucco and Plakas described a
wide range of alternative tracking algorithms in their paper.8

In the next section, we provide brief discussions on the 13
image fusion methods of interest. These fusion methods fall
into two broad categories—simple combination and pyramid
structure. A brief description of the FPSS tracker is provided
in Sec. 3, while the experimental results on the tracking per-
formance of various image fusion methods are presented in

Sec. 4. Finally, some concluding thoughts are given in
Sec. 5.

2 Fusion Methods
In this paper, we focus on 13 pixel-level image fusion meth-
ods, ranging from the simplest pixels averaging method to
the very complicated dual-tree complex wavelet transform
method. There are other interesting but less popular image
fusion algorithms, including one that relies on factorizing
an image V into two nonnegative matrix components, W
and H, with W representing a basis optimized for represent-
ing V.9 Another approach to image fusion is to use training
sets and supervised classifiers, as explored by Chan.10 In
this work, however, we assume no prior training data are
available.

To evaluate the image fusion algorithms examined here,
we used all FPSS coarsely registered color visible and LWIR
images as input data, a pair of which is shown in Fig. 1. To
allow fusion with LWIR images, the color visible (RGB)
images were converted to grayscale images using a simple
weighting of 0.2989Rþ 0.5870Gþ 0.1140B, which yielded
the intensity value but removed the hue and saturation infor-
mation.11 For many automatic target detection and tracking
algorithms, it is, indeed, more efficient to process grayscale
images internally, while providing color outputs for human
consumption only.

2.1 Simple Combinations

The most intuitive pixel-level fusion methods examined here
are simple averaging, intelligent weighting, and selecting
maximum or minimum pixel values between the visible and
LWIR images. All these methods involve only simple pixel
operations, which require traversing the two input images to
be fused pixel-by-pixel, leading to a simple Oðm × nÞ oper-
ation for an image of size m × n. Pixels ðI1Þij and ðI2Þij in
images I1 and I2 need only be compared against each other
once.

In the first fusion method, a fused image If was generated
through simple averaging by calculating ðIfÞij ¼ ½ðI1Þij þ
ðI2Þij�∕2, and the resulting If is shown in Fig. 2(a).

Fig. 1 Example of a color visible (a) and an LWIR (b) image in the FPSS dataset.
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Because the visible and LWIR images have differing resolu-
tions and salient features, this method tends to muddle the
details.

We boosted the influence of the better image using the
principal component analysis (PCA) derived from the covari-
ance matrix between the two input images. A simple way to
do this is to consider each image as a single vector I1 and I2,
creating a 2 × 2 covariance matrix when we compute the
covariance of ½ I1 I2 �. A resulting eigenvector provides
the weights for fusing the pixels: ðIfÞij ¼ ðvkÞ1ðI1Þij þ
ðvkÞ2ðI2Þij, where vk represents the normalized eigenvector
associated with λk, the larger one of the two eigenvalues.
Generally, the PCA-weighted averaging method strongly
favors the image with the highest variance, which may or
may not contain more informative and useful details. In fact,
this selection criterion can be a disadvantageous one when
dealing with noisy images. As shown in Fig. 2(b), the fused
image produced by this method closely matches the original
visible spectrum image because the visible image has more
details and a higher variance.

Choosing the maximum pixel value, ðIfÞij ¼ max½ðI1Þij;
ðI2Þij�, from a pair of LWIR and visible images, as shown in

Fig. 3(a), may be appropriate to find some hidden targets. A
man may be occluded in the visible spectrum, for example,
but he can still be located in the LWIR image. For a back-
ground subtraction method, it may be desirable to boost the
relative intensity of targets through this fusion method, if
these targets tend to be brighter than their immediate
background.

Choosing the minimum pixel value, ðIfÞij ¼ min½ðI1Þij;ðI2Þij�, may not be very useful in general because it tends
to deemphasize the strong foreground objects, as evident
from Fig. 3(b). In some rare occasions, this method may be
helpful in extracting weak targets (with both weak but detect-
able visible and LWIR signatures) from busy backgrounds
by deemphasizing stronger and brighter neighboring back-
ground pixels.

2.2 Pyramid Structures

Pyramid decompositions were introduced by Burt and
Adelson in 1983 as a compact encoding scheme.12 The origi-
nal idea is that a Gaussian kernel (low-pass filter) is applied
to the top-level image of a pyramid, I1 �G1, representing the
convolution of the image I1 with a Gaussian blurring matrix

Fig. 2 Fused image through simple average (a) and PCA-weighted average (b).

Fig. 3 Fusion by selecting maximum (a) and minimum (b) pixel intensities.
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G1. This image is then down-sampled to form the next level
of these pyramids. The difference between the low-pass
version and its previous-level image represents the high fre-
quency or detail information of the previous-level image. At
each step down the pyramid, we continue to filter and down-
sample in the same manner. A Laplacian pyramid is formed
by computing the difference between each level of the pyra-
mid, iteratively separating an image into low and high fre-
quency components, except that the lowest level contains
the remaining low-frequency information.

Since each level is a down-sampled version of the pre-
vious level, we need to up-sample and interpolate the deci-
mated version in order to compute the difference between
the two adjacent levels. For example, the Laplacian image
at level k of Im, denoted as ðLmÞk, can be computed as
ðLmÞk ¼ ðImÞk − fkþ1½ðImÞkþ1�, where fkþ1½ � denotes the
function consisting of up-sampling and an interpolation filter
with similar blurring response as Gk, while k denotes the
level of decomposition. As we proceed down the pyramid,
ðImÞk denotes the blurred and decimated version of ðImÞk−1.
By decomposing each set of the original LWIR and visible
images, we form compact representations separated into
detail and approximation information. Hence, we can then
weight the coefficients in each pyramid. To reconstruct the
fused image, we then reverse the decomposition process,
starting with a synthesis image at level kþ 1, denoted as
ðSmÞkþ1, expanding it, and adding it to ðLmÞk to get ðSmÞk.
The initial synthesis image is the background coefficients
found at the bottom of the Laplacian pyramid. If we select
the maximum coefficients between the two pyramids by
taking max f½ðL1Þk�ij; ½ðL2Þk�ijg for each level k, and all ij
coefficients during this reconstruction process, then a
Laplacian fused image is generated [see Fig. 4(a)].

A filter-subtract-decimate (FSD) pyramid is similar to
the Laplacian pyramid, but the levels are subtracted prior to
decimations. This makes the method simpler and reduces
delay, therefore, allowing easier real-time implementation.
Slight frequency distortions are introduced, thus a correction
factor is required for perfect reconstruction. This term can
be dropped in practice, though variations can make minor
adjustments in the synthesis phase to account for this.

Figure 4(b) shows the result of image fusion based on the
original FSD technique proposed by Anderson.13 Both
images in Fig. 4 may look similar, except for a slight shading
difference, but their differences in tracking performance
could be larger than that.

The ratio-of-low-pass (ROLP) pyramid and the contrast
pyramid use the ratio of levels of the Gaussian pyramid to
compute the coefficients at the next level, instead of their
differences.14,15 Otherwise, the decomposition process re-
sembles that of the Laplacian pyramid. Since the stored
coefficients are not used to compute levels of the Gaussian
pyramids, the underlying Gaussian pyramid decomposition
of the image does not change. The primary difference
between ROLP and contrast pyramids is the use of a local
background to normalize the ratio. The contrast pyramid
computes ðLmÞk ¼ fðImÞk∕fkþ1½ðImÞkþ1�g − 1, and the off-
set of 1 is reversed during reconstruction. On the other hand,
the ROLP pyramid computes ðLmÞk ¼ ðImÞk∕fkþ1½ðImÞkþ1�.
Instead of summing coefficients during synthesis (as in the
case of Laplacian pyramid), we now reverse-decomposition
by expanding ðSmÞkþ1 and multiplying it with ðLmÞk to get
ðSmÞk. A small epsilon factor is often added to the denom-
inator to prevent division-by-zero issues. Figure 5 shows the
resulting fused images from the ROLP and contrast pyramid
methods. These decomposition methods are designed to
emphasize the contrast in an image.

The gradient pyramid chooses the largest directional
derivative in each of four directions: horizontal, vertical, and
the two diagonal directions.16 These derivatives can be com-
puted using simple matrix operators. For example, at each
level of the pyramid, the four operators ½ 1 −2 1 �,
"

1

−2
1

#
;

"
0 0 1∕2
0 −1 0

1∕2 0 0

#
;

and

Fig. 4 Fusion by selecting the maximum coefficient of Laplacian pyramids (a) and FSD pyramids (b).
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"
1∕2 0 0

0 −1 0

0 0 1∕2

#

can be convolved with a filtered image

ðImÞk þ ðImÞk �
"
1∕16 1∕8 1∕16
1∕8 1∕4 1∕8
1∕16 1∕8 1∕16

#
;

where * represents the convolution operator. Coefficients are
selected for each of the four directions independently during
the fusion process and then added together to represent the
combined gradient strength at a given pixel location. A syn-
thesized image is reconstructed using the same procedure as
in the Laplacian pyramid case. An example of the fused
image produced by the gradient pyramid method is shown
in Fig. 6(a). These methods are designed to preserve orien-
tation information, which can be useful in some applications.

Morphological operations, such as opening and closing,
can be applied to the Gaussian pyramid without harmful
effects under certain circumstances and result in a morpho-
logical pyramid.17 For example, we can apply the following

operations to compute the next set of coefficients from ðImÞk:
morphologically open ðImÞk by first replacing the value of a
given pixel with the smallest pixel value found within a pre-
defined neighborhood of that pixel (erosion), and then on the
resulting image, replacing the value of a given pixel with the
largest pixel value found in the same neighborhood (dila-
tion). The resulting image can then be closed by reversing
the process—namely, first performing a dilation and then
an erosion operation. The opening operation will remove
small objects, while the closing operation will remove
noise and smooth transitions. We decimate the resulting
image to obtain our image for the next level of the pyramid,
ðImÞkþ1. We obtain the pyramid coefficients of level kþ 1 as
the difference between ðImÞk and an up-sampled and dilated
version of ðImÞkþ1 While these morphological operations
may produce good-looking results, as shown in Fig. 6(b),
they are quite computationally intensive in nature, and
their usefulness in enhancing tracking performance is not
necessarily great.

Finally, many specialized pyramid decompositions, such
as contourlets and wavelets, separate an image into approx-
imations and detail. We examined a simple discrete wavelet
transform (DWT) using the Daubechies Symmetric Spline

Fig. 5 Fusion by selecting the maximum coefficient of the ROLP pyramids (a) and contrast pyramids (b).

Fig. 6 Fusion by selecting the maximum coefficient of the gradient pyramids (a) and morphological pyramids (b).
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wavelet, as well as a shift-invariant discrete wavelet trans-
form (SIDWT), using the Harr wavelet. The DWT is applied
to an input image using two filters, g1 ¼ ½−2 4 −2 � and
h1 ¼ ½−1 2 6 2 −1 �. In this case, g1 is a high-pass
filter and h1 a low-pass filter. These filters are applied to
the columns and rows of an image consecutively in one
of these four combinations: g 0

1 � g1, g 0
1 � h1, h 0

1 � g1, and
h 0
1 � h1. The output of g 0

1 � g1 is the high frequency content
of the image, while the output of h 0

1 � h1 contains only the
low-pass one. All four combinations of the outputs are then
decimated by two to form four subband images. The result-
ing low-pass image is used for the next iteration of decom-
position, while the maximum coefficients from the other
three sets are stored in the wavelet tree. An example of
the fused images produced by DWT pyramids is shown in
Fig. 7(a).

For SIDWT, the filters g1 and h1 are defined as g1 ¼
½ 0 : : : 0 0.5 0 : : : 0 −0.5 0 : : : 0 � and
h1 ¼ ½ 0 : : : 0 0.5 0 : : : 0 0.5 0 : : : 0 �, with
2ðk−2Þ zeroes in the first and last set of zeroes, and 2ðk−1Þ
zeroes in the middle set of zeroes for level k of the pyramid.
While the SIDWT is very redundant (because it up-samples
the filter response instead of decimating the image at each
level of the pyramid), the dual-tree complex wavelet

transform (DT-CWT) can achieve approximate shift invari-
ance and only slight oversampling by filtering the image with
a pair of complementary filters. DT-CWT produces real and
complex coefficients at each level of the decomposition for a
total of 2d oversampling, where d is the number of levels of
decomposition. Figure 7 shows an example of the fused
images produced by SIDWT pyramids [Fig. 7(b)] and
DT-CWT [Fig. 7(c)], respectively.

The simple DWT can be prone to artifacts as a function of
position in the image, which could be particularly problem-
atic when using the FPSS background subtraction tracker to
detect motion information. As an object moves slightly, arti-
facts could shift in the image, resulting in many unnecessary
false alarms. Hence, a SIDWT or DT-CWT is expected to
perform better in a tracking task. Similar to other pyramid
methods, we use the maximum coefficient from either wave-
let tree at each level during the image fusion phase.

3 FPSS Tracker
The effects of different image fusion methods were examined
and compared using the existing FPSS moving target
tracking algorithm that was developed and tested with the
original FPSS datasets. In this study, the FPSS tracker
was run on the original color and LWIR images, as well

Fig. 7 Fusion by selecting the maximum coefficient of DWT pyramids (a), SIDWT pyramids (b), and DT-CWT pyramids (c).
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as the fused images generated by all fusion methods
described in the previous section.

3.1 Background Modeling

The key component of the FPSS tracker is its background
modeling and subtraction process, which is depicted in
Fig. 8. Each input image is first filtered by a stability
mask and then channeled through four image buffers of
equal size and depth. The images in buffers 2 and 4 are
used to generate background models 1 and 2, respectively.
Instead of being created originally from buffer 4, background
model 2 can also be obtained from a buffer of models that is
continuously replenished by the outgoing representations of
background model 1. By subtracting the next input frame
from these background models, we obtain two difference
images. A difference-product image (DPI) is obtained by
multiplying these two difference images pixel by pixel.

To begin the background modeling process, the first suc-
cessfully preprocessed input image frame is used to fill up all
image buffers and to become the initial background models.
For each of the subsequent input image frames, a simple
frame registration procedure is used to reduce any potential
jitter effects incurred by shaking cameras. Typically, a jitter-
free image contains a mostly stable background with a num-
ber of small but volatile areas caused by moving objects and
other transient events. In order to prevent rapidly changing
foreground pixels from ruining the background models, a
stability mask is used to filter out all unstable pixels from
the input image frame. Updated by the information from
DPI, this stability mask looks for significant intensity
changes based on a predefined threshold of variability and
maintains a record of the stability index at each pixel loca-
tion. Only those stable pixels on a jitter-free image are fed to
buffer 1, while the once-stable but now actively changing
pixels are blocked and substituted by the corresponding sta-
ble pixels available from buffer 1. Without the stable back-
ground models, it will be much harder to detect and extract
legitimate moving objects in the scene, while additional false
alarms will likely be generated.

Each incoming set of pixel values from the stability mask
replaces the corresponding pixel values in the oldest frame in
buffer 1 to form the newest frame in buffer 1, while the oldest
frame of buffer 1 becomes the newest frame in buffer 2. The
same mechanism of first-in first-out (FIFO) frame-shift and
update is applied to all image buffers continuously. The role
of buffer 1 is merely a time-delay buffer to induce a notice-
able gap in time—and potentially in content—between the

current input image and the image frames in buffer 2.
Background model 1 is derived from the images in buffer 2,
which can be as simple as taking the average of all images in
buffer 2. Similar to buffer 1, buffer 3 is just another buffer to
separate buffer 2 and buffer 4 in time. Background model 2
can be obtained by either processing (e.g., averaging) the
images in buffer 4 or drawing from the buffer of models sup-
plied by background model 1. The same background mod-
eling structure depicted in Fig. 8 can be extended to include
four or any larger even number of background models for
more stable background representations and higher target
enhancement capabilities at the expense of additional com-
putational resources and a longer initialization period before
the actual tracking begins.

One of the advantages of using multiple disjoint back-
ground models to generate a DPI is that the problematic
“trailing effect,” which is often associated with background
subtraction method, can be suppressed effectively in this
process. Since those gradually fading trails carved out by the
moving objects are showing up in different parts of the dis-
joint difference images, as shown by the two difference
images on the left side of Fig. 9, they are likely to diminish
or disappear when the corresponding DPI is formed. For the
same reason, time-dependent noises on the difference images
are also suppressed during the formation of DPI. Another
advantage of this method is that the target trails are now
clearly detached from the moving objects, which allows the
subsequent target detection module to estimate the size and
location of those movers more accurately. With improved
estimation in target size and location, the target tracking
module may also perform better motion estimation and track
maintenance.

An even number of background models is needed in the
formation of DPI to address the problem of target polarity,
which is a common target detection problem. Due to clothing
and ambient temperature change, the same type of moving
targets may assume different polarity of pixel intensity with
respect to their immediate background. Figure 10 shows a
pair of LWIR images that exhibit polarity change in human
signatures during different seasons of the year. Using a single
difference image or a DPI computed with any odd number
of difference images to detect the moving targets will have
to pick the locations with both positive and negative values
simultaneously and appropriately, which is not always easy
or straightforward. This problem is alleviated, however, sim-
ply as a by-product of forming the DPI using an even number
of difference images.

Fig. 8 The background modeling and subtraction process in the
FPSS tracker.

Difference-Product Image  

Fig. 9 Enhancement of target signatures and suppression of trailing
effects and noises via a DPI.
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3.2 Target Detection and Tracking

After a DPI is generated, a morphological operation is used
to remove small spikes and to fill up small gaps in the DPI.
Furthermore, a pyramid-means method is used to enhance
the centroid and overall silhouette of the moving targets.
The moving target detection process begins with finding
the brightest pixel on the post-processed DPI, which is usu-
ally associated with the most probable moving target in the
given input frame. The size of this target is estimated by find-
ing all the surrounding pixels that are deemed connected to
the brightest pixel. After the first moving target is detected,
all the pixels within a rectangular target-sized area of that
target are suppressed to exclude them from subsequent detec-
tions. The detection process is repeated by finding the next
brightest one among the remaining pixels until all the pixels
are suppressed, a predefined number of detections are ob-
tained, or other user-defined stopping criteria are reached.

Using the detection results on consecutive input images,
tracks of all moving targets are built and maintained. In order
to build a meaningful track, a noticeable moving target must
appear in multiple contiguous frames in a video sequence.
This requirement may not be met when the target is moving
across the field of view of the camera at a very short range
and/or a very high speed; when the camera is operated at a
very low frame rate; when the target is occluded for an
extended period of time and/or behind a very large obstacle;
or when a combination of these and other detrimental factors
occur. The FPSS tracker also uses previous locations, veloc-
ity, and target size of a moving target to predict the destina-
tion of its next movement.

4 Experimental Results
The Second FPSS dataset consists of 53 pairs of concurrent
color-LWIR video sequences for a total of 71,236 frames,
which depict various staged suspicious activities around a
big parking lot. Each video sequence was obtained at a frame
rate of 10 frames per second. No frames were dropped from
any sequence in our experiments, therefore, the same frame
rate was maintained across the board. Ground-truth infor-
mation (target type and target location) associated with each
observable moving target on each image frame was semi-
manually generated using a ground-truthing GUI, storing

the location of all people, vehicles, animals, and other
objects for each frame. The ground truth files associated
with a given pair of color-LWIR sequences may vary slightly
in their content, as some moving targets may sometimes be
observable in one but not both of the imageries. Because we
used the LWIR approximation coefficients during the pyra-
mid decompositions, and because LWIR ground truth files
usually contain more information on the targets, we chose
the LWIR ground-truths files for the purpose of verifying
the detections on fused images. Based on the ground-truth
information and the target size estimated by the FPSS
tracker, we may compute the tracking performance achiev-
able by the original color and LWIR sequences, as well as
the performances pertaining to the fused image sequences
generated by different image fusion methods.

To qualify as a correct detection or a hit, the ground-truth
location must be included in the bounding box (target size)
estimated by the FPSS tracker for the given detection.
Multiple detections on the same target were counted as only
one hit, but multiple detections on a nontarget were treated as
multiple false alarms (FAs). When multiple targets in prox-
imity were covered by a single detection, it would be treated
as multiple hits. Ground-truth targets that were not included
by the bounding box of any detection were regarded as
misses. An adjustable acceptance threshold was used to
vary the tradeoff between hits and FAs. While a range of
acceptance thresholds from 0.1 to 25,000 was initially con-
sidered, we actually used the acceptance thresholds from 30
to 25,000 because very few FPSS responses had an activation
level of under 30 in our experiments. Instead of normalizing
the FPSS responses from different fusion methods and com-
paring their performance at different acceptance thresholds,
we just compared their hit rates at certain fixed FA rates.
By plotting the FA rate (FAR) (average number of incorrect
detections per frame) against the hit rate (percentage of true
targets that were correctly detected) at different acceptance
thresholds, a receiver operating characteristic (ROC) curve
results. To emphasize the critical differences between the
ROC curves, we focused on the two end zones of these
curves and examined the performance at FAR of less than
0.1 FA∕frame and at hit rates exceeding 80%. The ROC
curves for the original LWIR and color sequences were first
generated, as shown in Fig. 11, serving as the benchmark

Fig. 10 Human LWIR signatures reverse polarity in winter (a) and summer (b).
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performance curves that are included in all performance-
related figures for comparison purposes.

Figure 11 also shows the ROC curves associated with the
fused images generated by the four simple-combination
methods: simple averaging, PCA-weighted averaging, maxi-
mum pixel selection, and minimum pixel selection. Their
performances at the low FAR region are shown on the left
graph, while the right graph shows their performance as
more FAs are allowed. From the left graph, it is clear that the
original LWIR images performed the best at low FAR among
this group of six candidates. On the other hand, the original
color images were lagging behind their LWIR counterparts
consistently due to a significant increase in the number of
FAs caused by headlight glares and windshield reflections in
the evening hours, and protracted shadows under the slanted
sun. The right graph shows that the advantage of LWIR
sequences over color sequences continues to hold at the
high FAR region.

Given the nature of simply averaging or selecting the pix-
els of the original color and LWIR images by the four simple-
combination methods, we expected that their resulting fused
images would perform somewhere between the original
color and LWIR images. As evident from Fig. 11(a), this
was, indeed, the case for the FAR region of 0.02 or less

FAs per frame. As the allowable number of FAs was
increased, the fused images produced by simple averaging
and maximum pixel selection methods continued to yield
hit rates that were between those produced by the original
color and LWIR images, as demonstrated in Fig. 11(b).
The performance associated with the fused images generated
by the PCA-weighted averaging and minimum pixel selec-
tion methods, however, gradually fell below the performance
of the original color images. In other words, there was no
performance gain in tracking at any FAR by using the images
fused with simple combination methods over the original
LWIR images. At FARs higher than 0.02 FA per frame,
even the original color images outperformed the fused
images produced by the PCA-weighted averaging and
minimum pixel methods.

The fusion methods based on pyramid structures were
performed using an identical set of configuration parameters,
which is using five levels of decomposition and a 7 × 7
neighborhood size when running a saliency/match measure.
Based on their resulting ROC curves, these pyramid-based
fusion methods were categorized into two groups for sub-
sequent discussions: four inferior methods and five superior
methods. As shown in Table 1, all nine pyramid-based meth-
ods are much more computationally intensive than the four

Fig. 11 The performance of four simple-combination methods at low FAR region (a) and high hit rate region (b).

Table 1 CPU time (sec) needed to fuse 30 images using Matlab code on a Dell T7400 workstation.

Simple combinations CPU time Inferior pyramids CPU time Superior pyramids CPU time

Simple average 1.280 FSD 21.670 Laplacian 24.040

PCA average 2.030 Gradient 78.970 ROLP 23.050

Maximum pixel 1.560 DWT 22.740 Contrast 23.240

Minimum pixel 1.840 Morphological 62.530 SIDWT 209.600

DT-CWT 49.940
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simple combination methods, especially the SIDWT, gra-
dient, and morphological pyramids. Although the DT-CWT
is more than four times more efficient than its more redun-
dant variant, SIDWT, it is still considerably slower than the
five simpler pyramid-based methods, three of which are
ranked together in the superior pyramid column. More com-
putations do not always generate better results, and as we can
see, among the pyramid-based methods there are faster and
slower candidates in both the inferior and superior columns
of Table 1.

As shown by Fig. 12(a), the FSD, gradient, and DWT
achieved slightly worse performance than the original LWIR
images at low FARs, whereas the morphological pyramid
method clearly lagged behind others under the same condi-
tions. The picture is somewhat different at the other end of
these ROC curves, as shown by Fig. 12(b), where the DWT

and morphological pyramid methods were able to surpass the
LWIR curve at the FAR region of 0.7 FA per frame or higher.
Since alternative pyramid-based methods offer more consis-
tent gains over the complete range of FAR, we deem these
four pyramid-based methods inferior.

Finally, there are five pyramid-based fusion methods that
have achieved good results on both ends of the ROC curves:
the Laplacian, ROLP, contrast, SIDWT, and DT-CWT pyra-
mid methods. As shown by Fig. 13(a), these five fusion
methods clearly outperformed the original color and LWIR
images from the beginning and attained the largest advantage
at the FAR of around 0.02 FA per frame. At this FAR, the
hit rates for the original color and LWIR images are 54.29%
and 62.99%, respectively. As shown in Table 2, the corre-
sponding hit rates of the images fused by contrast pyramid
and ROLP pyramid methods are 76.94% and 75.11%,

Fig. 12 The performance of four inferior pyramid-based fusion methods at low FAR region (a) and high hit rate region (b).

Fig. 13 The performance of five superior pyramid-based fusion methods at low FAR region (a) and high hit rate region (b).
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respectively. With improvements of 12 to 14% over the
LWIR images, the performance gains achieved by these
two fusion methods are quite remarkable at this FAR.

Among the five superior pyramid-based methods, SIDWT
is clearly lagging behind other methods in performance.
Furthermore, the computational complexity of SIDWT is
about nine times of that of the contrast pyramid and ROLP
pyramid methods. Therefore, SIDWT is the least desirable
method among this group. Although the performance of
DT-CWT is competitive to those of the contrast, ROLP,
and Laplacian methods, it requires more than twice as
much CPU time to complete the same image fusion task,
which makes it less attractive among the group of superior
pyramids.

Based on the performance of the superior fusion methods
at the high FAR region shown in Fig. 13(b), it is obvious that
the advantage of these methods over the original color and
LWIR images is still maintained at every point in the high
FAR region, even though the performance gain is less sig-
nificant than that in low FAR region. For example, the hit
rates of the images fused by contrast pyramid and ROLP
pyramid methods at a FAR of 0.80 FA per frame are
95.52% and 95.37%, respectively, exceeding those of color
(93.66%) and LWIR (94.31%) images by slightly more
than 1%.

As an object moves, it appears as a constant shift of some
pixels in the image. For a method such as the regular DWT,
large coefficient variations can be incurred by this shift. If
it occurs in either the LWIR or color image, these large
image coefficients can significantly outweigh the expected
ones during the image fusion process. Instead of appearing
as slight movements, some random variations may appear
instead, which are more likely to be interpreted as noise.
Due to the shift invariance property of DT-CWT, this trans-
form is less affected by this problem and hence performs
among the best. SIDWT should have offered similar advan-
tages as the DT-CWT does, but the oversampling during the
decomposition process actually produces some conflicts
when the color and LWIR images are merged, thus hampers
the SIDWT performance somewhat. The ROLP, contrast,
and Laplacian methods work exceedingly well, because they
all emphasize the contrast (brightness variation in color or
LWIR images) information in the input images. On the
other hand, gradient and morphological methods that empha-
size the edge information in the input images do not perform
very well because many faint targets may not have strong
edges.

5 Conclusions
Although a given sensor may be easily fooled sometimes, it
is much harder to trick a number of sensors simultaneously at
any given time. For this reason, we explored and exploited
the rather complementary natures of two common imaging
sensors: LWIR and color visible sensors. Instead of harness-
ing prior background knowledge and external information
sources (such as metadata on weather conditions, time of
the day, season of the year, site characteristics, number of
targets, target ranges, depression angle, speed of movement,
and other related information) to perform symbolic-level
image fusion, we focused solely on pixel-level image fusion
in this work. Therefore, the techniques examined and the
results obtained in this work are more readily transferrable
to other applications and scenarios that process color and
LWIR imageries.

Based on the results generated by the four simple-combi-
nation methods examined in this work, we conclude that
these simple methods are not useful, because their perfor-
mances were worse than using the original LWIR images
alone. Among the nine pyramid-based image fusion meth-
ods, the gradient and FSD methods are the worst candidates
because they required 10 to 60 times more CPU time than
those required by the simple combination methods, but
performed even worse at the high FAR region. The morpho-
logical and DWT methods are slightly better than the gra-
dient and FSD methods, primarily because they managed
to outperform LWIR in the high FAR region. Given their
performances and computational requirements, these four
pyramid-based methods are deemed as inferior methods in
general.

The Laplacian, ROLP, contrast, SIDWT, and DT-CWTare
found to be superior image fusion methods, because they
consistently outperformed LWIR in every FAR region. The
contrast and ROLP methods are considered the best image
fusion methods to pair with the FPSS tracker because their
ROC curves are consistently on top of all other ROC curves
produced in this work. Furthermore, the computational re-
quirements of these two methods are almost the lowest
among the pyramid-based methods. On the other hand,
SIDWT is ranked at the bottom in this group, as it performed
the worst and consumed four to nine times more CPU time
than its counterparts in this group did.

For future work, a potential way of improving image
fusion performance is to treat each color image as three sep-
arate images (R, G, and B images) and fuse these three
images with the LWIR image together. The fusion algorithms

Table 2 Performance (hit rate in %/FA per frame) of the 13 fusion methods at low FAR region.

Simple combinations HR/FAR Inferior pyramids HR/FAR Superior pyramids HR/FAR

Simple average 56.14∕0.02005 FSD 60.34∕0.02008 Laplacian 73.51∕0.02008

PCA average 53.43∕0.02008 Gradient 62.90∕0.02005 ROLP 75.11∕0.02005

Maximum pixel 55.71∕0.02008 DWT 61.47∕0.02008 Contrast 76.94∕0.02005

Minimum pixel 56.17∕0.02008 Morphological 40.27∕0.02008 SIDWT 67.53∕0.02005

DT-CWT 73.80∕0.02002
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examined in this work do not limit the number of images that
can be fused together. Therefore, short-wave infrared, mid-
wave infrared, and hyperspectral imageries could also be
considered, if they are properly coregistered. Performance
may also be improved by linking the image fusion process
with the tracking algorithm, through which the information
that is critical to the tracker may be better preserved or
enhanced. For instance, a region-based segmentation algo-
rithm may be incorporated into the DT-CWT image fusion
process.18,19 The segmentation algorithm could exploit the
limited redundancy in DT-CWT and tie the feature level
and pixel level fusion algorithms together.
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Abstract—In this paper, we propose a new sparsity-based al-
gorithm for automatic target detection in hyperspectral imagery
(HSI). This algorithm is based on the concept that a pixel in HSI
lies in a low-dimensional subspace and thus can be represented
as a sparse linear combination of the training samples. The
sparse representation (a sparse vector corresponding to the linear
combination of a few selected training samples) of a test sample
can be recovered by solving an -norm minimization problem.
With the recent development of the compressed sensing theory,
such minimization problem can be recast as a standard linear
programming problem or efficiently approximated by greedy
pursuit algorithms. Once the sparse vector is obtained, the class
of the test sample can be determined by the characteristics of the
sparse vector on reconstruction. In addition to the constraints
on sparsity and reconstruction accuracy, we also exploit the fact
that in HSI the neighboring pixels have a similar spectral char-
acteristic (smoothness). In our proposed algorithm, a smoothness
constraint is also imposed by forcing the vector Laplacian at
each reconstructed pixel to be minimum all the time within the
minimization process. The proposed sparsity-based algorithm
is applied to several hyperspectral imagery to detect targets of
interest. Simulation results show that our algorithm outperforms
the classical hyperspectral target detection algorithms, such as
the popular spectral matched filters, matched subspace detectors,
adaptive subspace detectors, as well as binary classifiers such as
support vector machines.

Index Terms—Hyperspectral imagery, sparse recovery, sparse
representation, spatial correlation, target detection.

I. INTRODUCTION

H YPERSPECTRAL remote sensors capture digital images
in hundreds of narrow spectral bands (about 10 nm wide),

which span the visible to infrared spectrum [1]. Pixels in HSI are
represented by -dimensional vectors where is the number
of spectral bands. Different materials are usually assumed to be
spectrally separable as they reflect electromagnetic energy dif-
ferently at specific wavelengths. This property enables discrim-
ination of materials based on the radiance spectrum obtained
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by hyperspectral imagery. HSI has found many applications in
various fields such as military [2]–[4], agriculture [5], [6], and
mineralogy [7]. One of the important applications of HSI is
target detection, which can be viewed as a two-class classifica-
tion problem where pixels are labeled as target (target present)
or background (target absent) based on their spectral character-
istics. Support vector machines [8], [9] have been a powerful
tool to solve supervised classification problems and have shown
a good classification performance for hyperspectral classifica-
tion [10], [11]. A number of algorithms also have been proposed
for target detection in HSI based on statistical hypothesis testing
techniques [2]. Among these approaches, spectral matched fil-
ters [12], [13], matched subspace detectors [14], and adaptive
subspace detectors [15] have been widely used to detect targets
of interests. The details of these classical algorithms will be de-
scribed in the next section.

Recently, a novel signal classification technique via sparse
representation have been proposed for face recognition [16]. It
is observed that aligned faces of the same object with varying
lighting conditions approximately lie in a low-dimensional sub-
space [17]. Thus, a test face image can be sparsely represented
by training samples from all classes. The most compact rep-
resentation can be obtained by solving a sparsity-constrained
optimization problem. This algorithm exploits the discrimina-
tive nature of sparse representation and the reconstruction of the
test sample provides directly its classification label. This idea
naturally extends to other signal classification problems such
as iris recognition [18], tumor classification [19], and HSI un-
mixing [20].

In this paper, we propose a target detection algorithm based
on sparse representation for HSI data. We use the same sparsity
model in [16] where a test sample is approximately represented
by very few training samples from both target and background
dictionaries, and the recovered sparse representation is used di-
rectly for detection. In addition to the constraints on sparsity
and reconstruction accuracy, we show that it is necessary to ex-
ploit the fact that neighboring HSI pixels usually have a sim-
ilar spectral characteristics as well. To achieve this, we impose
a smoothing constraint on the reconstructed image by forcing
the vector Laplacian, as defined in Section III-D, of the recon-
structed pixels to be zero. By incorporating this spatial corre-
lation, the detection performance is significantly improved for
images in which targets consist of multiple pixels.

One of the advantages of our proposed approach is that there
is no explicit assumption on the statistical distribution character-
istics of the observed data as in the previous target detection al-
gorithms [12]–[15]. Furthermore, in the spectral matched filter,
the target spectral signature is a single vector, usually obtained

1932-4553/$26.00 © 2011 IEEE



	  	
123

630 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 3, JUNE 2011

by averaging the training target samples or from a spectral li-
brary. However, using a single target spectrum is usually insuf-
ficient to represent the target spectral characteristics since the
target spectrum changes with the environmental situation. This
problem can be avoided by using a target subspace model rep-
resented by training samples that account for the target spec-
trum under various conditions of illumination and atmospheric
conditions, making the dictionary invariant to the environmental
variations [21], [22]. This environmental invariant approach can
easily be incorporated into our algorithm by augmenting the
target and background dictionaries with synthetically generated
spectral signatures in order to construct better target and back-
ground subspaces. Moreover, unlike the other detectors based
on statistical hypothesis testing, the sparsity model in our ap-
proach has the flexibility of imposing additional restrictions cor-
responding to the characteristics of HSI such as smoothness
across neighboring hyperspectral pixels.

The paper is structured as follows. Section II briefly de-
scribes several previously proposed approaches commonly
used in automatic target detection in HSI. Our sparsity-driven
target detection algorithm is presented in Section III. The
effectiveness of the proposed method is demonstrated by sim-
ulation results presented in Section IV. Conclusions are drawn
in Section V. Throughout this paper, matrices and vectors are
denoted by upper and lower case boldface letters, respectively.

II. PREVIOUS APPROACHES

In this section, we briefly introduce previously developed ap-
proaches for target detection in HSI. Specifically, we describe
problem formulation of support vector machines (SVMs), fol-
lowed by the signal models and detector expressions of the clas-
sical detectors including spectral matched filter (SMF), matched
subspace detectors (MSDs), and adaptive subspace detectors
(ASDs). Implementation details of the three statistical detec-
tors and their nonlinear (kernel) versions can be found in [23],
whereas details of SVM can be found in [24].

A. Support Vector Machines

The SVM approach [8] solves the supervised binary classifi-
cation problem by seeking the optimal hyperplane that separates
two classes with the largest margin. A nonlinear SVM (called
kernel SVM) is often implemented to further improve the sepa-
ration between classes by projecting the samples onto a higher
dimensional feature space. In kernel SVM, the dot products in
the original SVM formulation are replaced by a nonlinear kernel
function using the kernel trick [8].

It has also been shown that the integration of the contex-
tual information via composite kernels in SVM (i.e., contextual
SVM) leads to an improvement in HSI classification over the
traditional spectral-only SVM [24], [25]. In contextual SVM,
a pixel is redefined as a combination of the spectral pixel

and its spatial feature (e.g., the mean and standard de-
viation per spectral band) extracted in a small neighborhood.
In this paper, we implemented contextual SVM with a com-
posite kernel that fuses the spectral and spatial information via
a weighted summation

(1)

where is the tradeoff between spatial kernel and
spectral kernel . Examples of possible kernels can be found
in [26].

B. Spectral Matched Filter

Let be a spectral observation con-
sisting of spectral bands. The model for SMF can be ex-
pressed by

target absent

target present (2)

where is the target abundance measure ( when no
target is present and when a target is present),

is the spectral signature of the target, and
is the additive background noise.
Assume is zero-mean Gaussian random noise. Using the

generalized likelihood ratio test (GLRT), the output of SMF for
a test input is given by [12]

(3)

where represents the estimated covariance matrix for the cen-
tered observation data. If the output is greater than a
prescribed threshold , then the test sample will be determined
as a target; otherwise, it will be labeled as background.

Variations of SMF include the adaptive SMF (ASMF) where
the background clutter covariance matrix is estimated from a
small number of samples in the neighborhood of the test sample
and the regularized SMF [27] where a regularization term
is added to force the filter coefficients to shrink and become
smooth. The regularized SMF is implemented in Section IV for
detector performance comparison.

C. Matched Subspace Detectors

In the previous SMF approach, only a single target spectral
signature is used. However, in MSD, a pixel is modeled in terms
of target subspace and background subspace which are obtained
using target and background training data, respectively. The
target detection set-up for MSD is

target absent

target present (4)

where and represent matrices whose columns are linearly
independent and span the background and target subspaces, re-
spectively; and are unknown vectors whose entries are co-
efficients accounting for the abundances of the corresponding
column vectors of and , respectively; and is additive
Gaussian noise.

The GLRT for the above model is [14]

(5)

where is the projection matrix associated with the back-
ground subspace , and is the projection matrix associ-
ated with the target-and-background subspace . Usually,
the eigenvectors corresponding to the significant eigenvalues of
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the target and background covariance matrices are used to gen-
erate the columns of and , respectively. For a prescribed
threshold , if the output , then will be labeled
as target; otherwise, it will be labeled as background.

D. Adaptive Subspace Detectors

A scaled background noise under is used in ASD because
in the case of subpixel targets, the amount of background cov-
ered area may be different from that of a pure background pixel.
For ASD, the detection model for a measurement is

target absent

target present (6)

where is a matrix whose columns are linearly independent
vectors that span the target subspace is an unknown
vector of the abundances of the corresponding columns of

is Gaussian random noise, and is a scalar. The measure-
ment is assumed to be background noise under hypothesis
and a linear combination of a target subspace signal and scaled
background noise under hypothesis .

The GLRT for the above problem is given by [15]

(7)

where is the estimated background covariance. Similar to the
cases of SMF and MSD, if , then will be de-
clared as target; otherwise, it will be labeled as background.

III. SPARSITY-BASED TARGET DETECTION

In this section, we introduce the first sparsity-based HSI
target detection algorithm by sparsely representing the test
sample using a structured dictionary consisting of target and
background training samples. We first describe the details of
the sparse subspace model employed in the proposed algorithm,
and then demonstrate its ability as a classifier.

A. Sparsity Model

Let be a hyperspectral pixel observation, which is a -di-
mensional vector whose entries correspond to responses to var-
ious spectral bands. If is a background pixel, its spectrum ap-
proximately lies in a low-dimensional subspace spanned by the
background training samples . The pixel can
then be approximately represented as a linear combination of
the training samples as follows:

(8)

where is the number of background training samples,
is the background dictionary whose columns are the
background training samples (also called atoms), and is an
unknown vector whose entries are the abundances of the corre-
sponding atoms in . In our model, turns out to be a sparse
vector (i.e., a vector with only few nonzero entries). To better

Fig. 1. Example of sparse representation of a background pixel. (a) The original
pixel (blue solid) and its approximation represented by four training
samples in (red dashed). The MSE between and is .
(b) The sparse representation of . (c) The four background training spectral
signatures corresponding to the non-zero entries of .

illustrate this model, an example is shown in Fig. 1. A back-
ground sample consisting of bands (blue solid)
and its approximation (red dashed) are shown in Fig. 1(a).
The background dictionary contains training sam-
ples which are randomly picked from the entire image including
spectral signature for multiple background materials (e.g., vege-
tation, dirt road, and soil). The sparse representation is shown
in Fig. 1(b). We see that only 4 out of the 1300 entries of are
nonzero. The four atoms (background training samples) of
corresponding to the nonzero entries are shown in Fig. 1(c). The
test sample is approximated by a linear combination of only
four training atoms with a small reconstruction error of mean
squared error .

Similarly, a target pixel approximately lies in the target sub-
space spanned by the target training samples ,
which can also be sparsely represented by a linear combination
of the training samples

(9)

where is the number of target training samples, is the
target dictionary consisting of the target training pixels,

and is a sparse vector whose entries contain the abundances
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Fig. 2. Example of sparse representation of a target test sample. (a) The original
pixel (blue solid) and reconstructed pixel represented by four training
samples in (red dashed). The MSE between and is .
(b) The sparse representation of . (c) The four target training spectral signa-
tures corresponding to the nonzero entries of .

of the corresponding target atoms in . An example demon-
strating the effectiveness of this sparse-representation model is
depicted in Fig. 2. The target dictionary has training
samples. Note that because of the lack of availability of the
target spectral signatures, the size of the training dictionary for
targets is usually much smaller than that of the background dic-
tionary. Fig. 2(a) shows the original target spectral (blue solid)
and its approximation (red dashed) from four training atoms.
The sparse vector is shown in Fig. 2(b), and the atoms in
corresponding to the nonzero entries of are shown in Fig. 2(c).

In our proposed detection algorithm, an unknown test sample
is modeled to lie in the union of the background and target sub-
spaces. Therefore, by combining the two dictionaries and

, a test sample can be written as a sparse linear combina-
tion of all training pixels

(10)

where is a matrix con-
sisting of both background and target training samples, and

is a -dimensional vector con-
sisting of the two vectors and associated with the two
dictionaries. This model is similar to that of the MSD in (4)
where the test sample is assumed to lie in a subspace spanned

by training samples from both background and target classes.
However, in the case of MSD, the target and background are
assumed to have a Gaussian distribution and GLRT is used to
develop the detector. In our sparsity-based model, no assump-
tion about the target and background distributions is required.
Also, in the MSD signal model, the columns of the background
and target dictionaries have to be independent in order to
generate the required projection operators. In our approach,
the subspace model is more generalized since independence
between the training samples is not necessary. The vector

is a concatenation of the two vectors associated with the
background and target dictionaries and is also a sparse vector
as follows. Since the background (e.g., trees, grass, road, soil)
and target (e.g., metal, paint, glass) pixels usually consist of
different materials, they have distinct spectral signatures and
thus the spectrum of target and background pixels lie in dif-
ferent subspaces. For example, if is a target pixel, then ideally
it cannot be represented by the background training samples.
In this case, is a zero vector and is a sparse vector. On
the other hand, if belongs to the background class, then is
sparse and is a zero vector. Therefore, the test sample can
be sparsely represented by combined background and target
dictionaries, and the locations of nonzero entries in the sparse
vector actually contains critical information about the class
of the test sample . Next, we demonstrate how to obtain and
how to label the class of a test sample from .

B. Reconstruction and Detection

This section considers the reconstruction problem of finding
the sparse vector for a test sample , given the dictionary .
As discussed above, a test sample can be approximately rep-
resented by very few training samples. Given the dictionary of
training samples , the representation satisfying

can be obtained by solving the following optimization
problem for the sparsest vector:

subject to (11)

where denotes -norm which is defined as the number
of nonzero entries in the vector (also called the sparsity level
of the vector). The above problem of minimizing the -norm
is a NP-hard problem. If the solution is sufficiently sparse,
this NP-hard problem can be relaxed to a linear programming
problem by replacing the -norm by -norm, which can then
be solved efficiently by convex programming techniques [28],
[29]. Alternatively, the problem in (11) can also be approxi-
mately solved by greedy pursuit algorithms such as orthogonal
matching pursuit (OMP) [30] or subspace pursuit (SP) [31].
Due to the presence of approximation errors in empirical data,
the equality constraint in (11) can be relaxed to an inequality
one

subject to (12)

where is the error tolerance. The above problem can also be
interpreted as minimizing the approximation error within a cer-
tain sparsity level

subject to (13)
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where is a given upper bound on the sparsity level [32]. In
[33], it has been shown that the solutions to the problems in (12)
and (13) coincide for properly chosen parameters and , and
therefore the two problems are in some sense equivalent. In this
paper, the greedy SP algorithm [31] is used to approximately
solve the sparse recovery problem (13) due to its computational
efficiency.

The sparse vector is recovered by decomposing the pixel
over the given dictionary to find the few atoms in that

best represent the test pixel . The recovery process implic-
itly leads to a competition between the two subspaces. There-
fore, the recovered sparse representation is naturally discrimi-
native. Once the sparse vector is obtained, the class of can
be determined by comparing the residuals
and , where and represent the recov-
ered sparse coefficients corresponding to the background and
target dictionaries, respectively. In our approach, the output of
detector is calculated by

(14)

If with being a prescribed threshold, then is deter-
mined as a target pixel; otherwise, is labeled as background.

Fig. 3 shows an example of sparse reconstruction of a back-
ground test sample and a comparison to the pseudo-inverse re-
construction. This example illustrates the advantage of -norm
in classification problems over the conventional -norm. The
pseudo-inverse solution is obtained by solving the following
minimum -norm problem:

subject to (15)

The above problem in (15), for the underdetermined linear
system , has a closed-form solution with
being the pseudo-inverse of . For a test sample and training
dictionary , the minimum -norm vector and minimum

-norm vector are shown in Figs. 3(a) and (b), respectively.
Blue and red represent entries corresponding to the background
and target dictionaries, respectively. The original test sample
and the partial reconstructed pixels using only the background
dictionary and only the target dictio-
nary are shown in Figs. 3(c) and (d).
Although the pseudo-inverse solution yields perfect recon-
struction, we see that it is not sparse and its nonzero entries
spread over both classes. Thus, cannot be used directly for
detection. The minimum -norm solution , on the contrary,
has all of its nonzero entries concentrated in the background
part, which indicates that the test sample lies in the background
subspace. Furthermore, with the pseudo-inverse solution , as
seen in Fig. 3(d), neither nor accurately approxi-
mates the original pixel, leading to a small difference between
the residuals and . Hence,
the solution cannot be used to determine the class of the
input solely based on the residuals. On the other hand, the
residuals associated with the minimum -norm solution are

(i.e., the original pixel is well
approximated by the background dictionary). Clearly, is a
background pixel using the minimum -norm solution.

Fig. 3. Example of sparse reconstruction of a background test sample with a
comparison to the minimum -norm (pseudoinverse) solution. (a) Minimum

-norm solution . (b) Pseudo-inverse solution . (c) Minimum
-norm reconstruction from the background dictionary (blue

dashed), reconstruction from the target dictionary (red dashed), and
the original test sample (black solid). (d) Pseudo-inverse reconstruction from
the background dictionary (blue dashed), reconstruction from
the target dictionary (red dashed), and the original test sample
(black solid).

C. Background and Target Dictionary Construction

Another aspect of the problem that requires careful attention
is how to construct appropriate dictionaries and . Global
dictionaries for target and background can be designed using
given training data. However, in target detection applications
there is usually a lack of training data especially for the target.
The background is often modeled by a subspace by using some
random pixels from the test image. Furthermore, a single target
spectral signature, as employed in SMF, is often insufficient to
represent a target material as the spectrum is affected by envi-
ronmental conditions (e.g., illumination and atmospheric vari-
ations). By using physical models and the MORTRAN atmo-
spheric-modeling program [34], meaningful target spectral sig-
natures can be generated which can capture the target signature
appearance over a wide range of atmospheric conditions. For ex-
ample, in [21] a target subspace was constructed by generating a
large number of target signatures using MORTRAN under var-
ious atmospheric conditions. A similar idea can be incorporated
in our approach to construct a redundant target dictionary which
could be invariant to the environmental variations. Furthermore,
it can be combined with the idea of frame generation [35], [36]
by imposing the constraints on tightness, maximum robustness,
equiangularity, etc., to design more desirable overcomplete dic-
tionaries. The K-SVD dictionary design technique [37], which
alternately minimizes sparsity of the representation and updates
the codebook to better fit the data, can also be used to form the
redundant dictionaries to further improve the performance of the
proposed sparsity-based algorithm.

In this paper, we use a small global target dictionary con-
structed by using some of the target pixels on one of the targets
in the scene. For the background dictionary, instead of using
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Fig. 4. Dual window centered at test sample .

a fixed global background dictionary containing samples from
various background materials (e.g., trees, grass, road, buildings,
etc.), we use an adaptive local background dictionary in order to
better represent and capture the spectral signature of test sample.
Specifically, the background dictionary is generated locally
for each test pixel using a dual window centered at the pixel
of interest, as shown in Fig. 4. The inner window should be
larger than the size of a target. Only pixels in the outer region
form the atoms in . In this way, the subspace spanned by
the background dictionary becomes adaptive to the local sta-
tistics. Therefore, if the test sample is a background pixel, it is
highly likely that it finds very similar spectral characteristic in
the background dictionary. On the other hand, if the test sample
is a target pixel, it would be difficult for the pixel to find a good
match in since the outer window region does not include any
target pixels. The usage of a dual window significantly improves
the detection performance over a global background dictionary,
as is shown via the simulation results in Section IV.

D. Detection With Smoothing Constraint

In the above process, the sparsity-based target detector is
applied to each pixel in the test region independently without
considering the correlation between neighboring pixels. Hy-
perspectral imagery, however, is usually smooth in the sense
that neighboring pixels usually consist of similar materials and
have similar spectral characteristics where small differences are
often due to sensor noise and/or atmospheric variation. In this
paper, we assume that there are multiple pixels on the target.
Therefore, we propose to incorporate a smoothing penalty term
in the proposed sparsity-based detector in order to exploit the
spatial correlation between neighboring pixels.

Let be a pixel of interest in a hyperspectral image , and
be its four nearest neighbors in the spatial do-

main, as shown in Fig. 5. While searching for the sparsest rep-
resentation of the test sample , we simultaneously minimize
the vector Laplacian at the reconstructed pixel , which is a

-dimensional vector calculated as

(16)

where is the reconstruction of and is the corre-
sponding recovered sparse vector. In this way, the reconstructed
test sample is forced to have a similar spectral characteristics as
its four nearest neighbors; hence, smoothness is enforced across
the spectral pixels in the reconstructed image.

Fig. 5. Four nearest neighbors of a pixel .

Let be the sparse vector associated with (i.e., ).
The new problem with the smoothing constraint can now be
formulated as

minimize

subject to:

(17)

In (17), we aim to find the sparsest vector that approximately sat-
isfies two sets of linear constraints. The first set forces the vector
Laplacian of the reconstructed pixel to be minimal such that
the reconstructed neighboring pixels have similar spectral char-
acteristics, and the second set minimizes reconstruction errors.
Now denote the concatenation of ’s and ’s by

... and ... (18)

The linear constraints can be written in terms of and as

. . . (19)

Therefore, the optimization problem in (17) can be reformulated
as

minimize

subject to: (20)

where

and

The problem in (20) is the standard form of a linearly con-
strained sparsity-minimization problem and can be solved using
the greedy SP algorithm [31]. Similar to the previous case in
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Fig. 6. Example comparing the reconstruction and detection problem for a
background test sample without and with the smoothing constraint. (a) Solution
to (11) (without smoothing constraint). (b) By solving (11), the reconstruction
from the background dictionary (blue dashed), reconstruction from the target
dictionary (red dashed), and the original test sample (black solid). (c) Solution
to (20) (with smoothing constraint) for the centered test sample. (d) By solving
(20), the reconstruction from the background dictionary (blue dashed), recon-
struction from the target dictionary (red dashed), and the original test sample
(black solid).

(11), this problem can also be relaxed to allow for approxima-
tion errors in empirical data and be rewritten as

subject to (21)

or

subject to (22)

where is the error tolerance and is the sparsity level.
By exploiting the smoothness across the HSI pixels, the

detection performance can be significantly improved. Fig. 6
shows an example of a background test sample which is
misclassified as a target using (11), but is correctly labeled
using (20) with the smoothing constraint. The solution to (11)
for the given test sample is depicted in Fig. 6(a). We see
that the nonzero entries of the solution correspond to both
background and target training atoms, and the residuals are

. In the case with the smoothing
constraint, by solving (20), the nonzero entries only concentrate
on part corresponding to the background dictionary, and the
residuals are . Clearly, and the test
sample will thus be correctly labeled as a background sample.

Once the sparse vector in (20) is obtained, detection can be
performed based on the characteristics of the sparse coefficients
as it was done in Section III-B. We calculate the total residuals
obtained separately from the target and background dictionaries

Fig. 7. Results for Desert Radiance II (DR-II) from (20) with the smoothing
constraint. (a) Averaged image over 150 bands. (b) Sparsity-based target de-
tector output: difference between and . (c) Residual corresponding to
the local background dictionary using the dual-window approach. (d) Residual

corresponding to the target dictionary.

and

(23)

where and denote the recovered sparse coefficients for
associated with the background and target dictionaries, respec-
tively. The output of the proposed sparsity-based detector for
the center pixel is computed by the difference of residuals
and the detection decision is made in a similar fashion as in the
other algorithms introduced in Section II:

(24)

That is, if the output is greater than a prescribed threshold
, then the test sample is labeled as a target; otherwise it is

labeled as background.

IV. SIMULATION RESULTS AND ANALYSIS

The proposed target detection algorithm, as well as the SMF,
MSD, ASD, and SVM, are applied to several real HSI, and the
results are compared both visually and quantitatively by the re-
ceiver operating characteristics (ROC) curves. The ROC curve
describes the probability of detection (PD) as a function of the
probability of false alarms (PFA). To be more specific, we pick
thousands of different thresholds between the minimal and max-
imal values of the detector output. The class labels for all pixels
in the test region are determined at each threshold. The PFA
is calculated by the number of false alarms (background pixels
determined as target) over the total number of pixels in the test
region, and the PD is the ratio of the number of hits (target pixels
determined as target) and the total number of true target pixels.

Two of the images, the desert radiance II data collection
(DR-II) and forest radiance I data collection (FR-I), are from a
hyperspectral digital imagery collection experiment (HYDICE)
sensor [38]. The HYDICE sensor generates 210 bands across
the whole spectral range from 0.4 to 2.5 m which includes the
visible and short-wave infrared bands. We use 150 of the 210
bands (23rd-101st, 109th-136th, and 152nd-194th), removing
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Fig. 8. Output for DR-II using local background dictionary (dual-window ap-
proach), with (a) sparsity-based target detector without smoothing constraint
using (11), (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

Fig. 9. Results for forest radiance I (FR-I) from (20) with smoothing constraint.
(a) Averaged image over 150 bands. (b) Sparsity-based target detector output:
difference between and . (c) Residual corresponding to the background
dictionary (dual-window approach). (d) Residual corresponding to the target
dictionary.

the absorption and low-SNR bands. The DR-II image contains
six military target on the dirt road and the FR-I image contains
14 targets along the tree line as depicted in Figs. 7(a) and 9(a),
respectively. For these two HYDICE images, every pixel on the
targets is considered a target pixel. The third image, collected
from the Airborne Hyperspectral Imager (AHI) [39] operating
in the long-wave infrared spectrum ranging from 8 to 11.5 m,
contains surface and buried mines as shown in Fig. 11(a), in
which every pixel has 70 spectral bands. In this image, there
are about 230 mines, each roughly of size 5 5 pixels and each
mine is treated as a target when computing the PD.

For DR-II and FR-I, the spectral signatures of the target
are collected directly from pixels

from the leftmost target in the given hyperspectral data. The
background signatures are generated by the
pixels in the outer region of a dual window as discussed in

Fig. 10. Output for FR-I using local background dictionary (dual-window ap-
proach), with (a) sparsity-based target detector without smoothing constraint
using (11), (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

Fig. 11. Results for the mine image from (20) with smoothing constraint.
(a) Averaged image over 70 bands. (b) Detector output: difference between

and . (c) Residual corresponding to the background dictionary
(dual-window approach). (d) Residual corresponding to the target dictionary.

Section III. The size of the outer and inner windows are 21 21
and 15 15, respectively, and there are background
training samples. The subspace pursuit algorithm [31] is used
to solve the sparsity-constrained problems (11) and (20). The
results of the proposed detector with the smoothing constraint
for DR-II are shown in Fig. 7(b)–(d). Fig. 7(c) and (d) shows
the residuals corresponding to the background dictionary

, and the residual corresponding to the
target dictionary , respectively, whereas
Fig. 7(b) shows the difference between and . In Fig. 7(c),
while background pixels are dark, the target pixels are bright
due to the fact that for each target pixel the sparsity-constrained
optimizer could not find good matches from the background
dictionary; therefore, the sparse vector and the residual
associated with the background dictionary is . On
the contrary, in Fig. 7(d), the targets are dark while the back-
ground are bright. Finally, as shown in Fig. 7(b), the difference
between and will further suppress the background and
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Fig. 12. Output for the mine image using local background dictionary (dual-
window approach), with (a) sparsity-based target detector without smoothing
constraint, (b) SVM with composite kernel, (c) MSD, (d) SMF, and (e) ASD.
(f) We repeat here the result of our proposed sparsity-based target detector with
smoothing constraint for visual comparison.

emphasizes the targets, thus yielding better detection perfor-
mance. Similar results can be seen in Fig. 9(b)–(d) for the FR-I
image. In Fig. 9(c) which represents the residual image ,
although the targets are bright, we can also see the shadow of
trees near the upper and right borders of the image has higher
magnitude than the other background areas. In Fig. 9(b), the
shadow is suppressed and this improves the false alarm rate.

Similar results can be observed in Fig. 11 for the mine
image, where the target dictionary is generated from

training samples of two mines, each occupying a
5 5 area, outside the test region. Since the targets in this
image are smaller than that of the two HYDICE images, the
inner window size is chosen to be 9 9 and the outer window
size remains 21 21. The background dictionary then
consists of samples.

Next we demonstrate the importance of employing a locally
adaptive background dictionary. The sparsity-based target de-
tection algorithm is applied to the DR-II and FR-I images using
local and global background dictionaries. The local is gener-
ated by pixels in the outer region of the dual window
centered at the test sample as in Fig. 4, and the global dictionary
( for DR-II and for FR-I) is generated by
randomly collecting background pixels, which can be reduced
to a smaller size by an unsupervised clustering algorithm such as
K-means. The detection performance is significantly improved
by using a local dictionary, as seen in the ROC curves shown
in Fig. 13. This is because a fixed global dictionary fails to cap-
ture the local similarity between pixels in a small neighborhood.
A local dictionary exploits the local statistics and helps to find
better resemblance of test samples. We see in Fig. 13 that the de-
tector using local dictionaries outperforms the one using global
dictionaries by a large margin for both HYDICE images.

Under the same settings (i.e., same target and background
training samples for all detectors), we compare the performance

Fig. 13. ROC curves using the sparsity-based target detector with smoothing
constraint for (a) DR-II and (b) FR-I with local and global background
dictionaries.

of the proposed sparsity-based algorithm to the previously de-
veloped conventional classifier SVM and detectors MSD, SMF,
ASD using both global and local background dictionaries. Let

and be, respec-
tively, the target and background dictionaries used in the pro-
posed sparsity-based algorithm. Note that in the local case,
is adaptive and changes for each test pixel. In order to have a
fair comparison, in the case of SMF the target signature is the
mean of the target dictionary atoms and the back-
ground covariance is obtained from the background dictionary

. In the SMF implementation, a regularization term is added
to the background covariance matrix such that the inverse ma-
trix in (3) is more stable, as described in [27]. In the case of
MSD, the eigenvectors corresponding to the significant eigen-
values of the covariance matrices obtained from atoms in and

are used to generate the basis for the target and background
subspaces, respectively [23]. For ASD, the basis for target sub-
space are generated in the same way as in MSD. The ASD noise
covariance matrix is computed from the background training
samples and a regularization term is added to the
noise covariance matrix in order to obtain a stable inverse ma-
trix. In SVM, a model is trained using atoms in and as two
different classes using a composite kernel which combines the
spectral and spatial feature via a weighted summation, where
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Fig. 14. ROC curves for DR-II. (a) Global background dictionary, .
(b) local background dictionary (dual-window approach), .

and in (1) are radial basis function kernels [9]. All parame-
ters are adjusted to obtain the best possible performance. Under
the current setting of target and background dictionaries, the
proposed detector has computational complexity comparable to
that of the classical detectors SMF, MSD, and ASD.

The ROC curves in both the global and local cases for DR-II
are shown in Fig. 14. We see that the sparsity-based detector
with the smoothing term using a local background dictionary
outperforms all other detectors. The SMF performs poorly since
the target signature is represented by a single vector, while in all
other approaches the targets are assumed to approximately lie
in a subspace. For visual comparison, the detector outputs for
SVM, MSD, SMF, and ASD are also displayed in Fig. 8, where
the locally adaptive background dictionary is employed. One
can immediately notice that the sparsity-based detector with the
smoothing constraint also leads to the best visual quality.

The ROC curves for FR-I are shown in Fig. 15. The FR-I
image is more difficult than the DR-II due to the presence of
the trees and shadow whose spectral curves have some resem-
blance to that of the targets. From the ROC plots, the proposed
algorithm still leads to the best performance. For visual inspec-
tion, the detection results obtained by SVM, MSD, SMF, and
ASD are illustrated in Fig. 10. For all detectors in Fig. 10, we
can see the bright spots in the shadow area along the tree line.

Fig. 15. ROC curves for FR-I. (a) Global background dictionary, .
(b) local background dictionary (dual-window approach), .

Fig. 16. ROC curves for the mine image using local background dictionary
(dual-window approach), .

This is alleviated by the proposed detection algorithm, as seen
in Fig. 9(b).

The AHI image of mines is the most difficult one among the
three test images. The targets include surface mines and buried
mines that are invisible. In this case, the ROC curve is obtained
slightly differently in that only one pixel on the mine needs
to be correctly labeled for the mine to be declared as a target.
Therefore, the PD is calculated by the number of hits divided
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by the total number of mines in the test region. In this experi-
ment, for all detectors, we use target training samples
from two mines outside the test region and back-
ground training samples adaptively constructed for each test
pixel by the dual-window approach with inner and outer win-
dows of size 9 9 and 21 21, respectively. The ROC curves
for the mine image using local dictionaries are shown in Fig. 16.
The proposed sparsity-based target detection algorithm still out-
performs the other algorithms, especially at low PFA. The out-
puts for SVM, MSD, SMF, and ASD are displayed as images in
Fig. 12. We see that although the MSD yields higher PD at cer-
tain PFA, there is a large background area in the middle of the
image where pixels have very high magnitude, hence increasing
the number of false alarms.

V. CONCLUSION

In this paper, we propose a target detection algorithm for hy-
perspectral imagery based on sparse representation of the test
samples. In the proposed algorithm, the sparse representation is
recovered by solving a constrained optimization problem that
simultaneously addresses the sparsity constraint, reconstruction
accuracy, and a smoothness penalty on the reconstructed image.
Detection decision is obtained from the recovered sparse vectors
by reconstruction. The new algorithm consistently outperforms
the previously developed detectors in terms of both qualitative
and quantitative measures, as demonstrated by experimental re-
sults in several real hyperspectral images. Future research in-
cludes the construction of better dictionaries. For example, the
proposed detector can be improved by generating dictionaries
invariant to the effect of atmospheric absorption [21]. We will
also investigate the design and exploitation of more discrimina-
tive dictionaries learned from the training data [37], [40].
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a b s t r a c t

This work describes the design and application of an apparatus to image aerosol

particles using digital holography in a flow-through, contact-free manner. Particles in

an aerosol stream are illuminated by a triggered, pulsed laser and the pattern produced

by the interference of this light with that scattered by the particles is recorded by a

digital camera. The recorded pattern constitutes a digital hologram from which an

image of the particles is computationally reconstructed using a fast Fourier transform.

This imaging is validated using a cluster of ragweed pollen particles. Examples

involving mineral-dust aerosols demonstrate the technique’s in situ imaging capability

for complex-shaped particles over a size range of roughly 15–500 mm micrometers. The

focusing-like character of the reconstruction process is demonstrated using a NaCl

aerosol particle and is compared to a similar particle imaged with a conventional

microscope.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The in situ characterization of small aerosol particles is
a persistent objective in applied contexts. Examples
include the determination of atmospheric aerosol compo-
sition for climate modeling and the detection of biological
weapons agents for defense applications. Countless mea-
surements and calculations of single and multiple-particle
scattering patterns can be found in the literature. The
overall goal of such work is to infer information relating
to the particles’ physical form, such as size and shape, by
analyzing the angular structure of these patterns, e.g.
see [1]. Unfortunately, a fundamental limitation of this
approach is the absence of an unambiguous quantitative
relationship between a pattern and the corresponding
particle properties, i.e., the so-called inverse problem.
Consequently, the inference of these properties from the

patterns has proved to be very difficult in practice, except
for the simplest of cases.

Ideally, one would prefer to image the particles
directly, thus eliminating the complexity and ambiguity
associated with interpretation of the scattering patterns.
However, the typical particle size range of interest for
many applications is roughly 0.1–10 mm [1,2]. Because of
this, direct images are possible in part of this range only
with high numerical-aperture (NA) optics and corre-
spondingly small focal volumes. This typically requires
collection and immobilization of particle samples, and
thus, such imaging is not a practical technique for particle
characterization in applications requiring high sample
through-put or images of the particles in their undis-
turbed form, i.e., in situ images.

Holography is an alternative technique that combines
useful elements of both conventional imaging and scat-
tering. Fundamentally, this is a two-step process: First, an
object is illuminated with coherent light and the intensity
pattern resulting from the interference of this light with
that scattered by the particle is recorded. This pattern
constitutes the hologram, from which an image of the
object is reconstructed. Traditionally, holograms are
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recorded with photographic film due to the film’s high
resolution, which is required to capture the finer features
of the interference pattern. The subsequent chemical
development of the film is costly and time consuming,
and this greatly limits the practical utility of the techni-
que. For this reason, charged coupled device (CCD) detec-
tors are used to record the interference pattern digitally.
The resulting so-called digital hologram can then be
computationally processed, rather than chemically, to
reconstruct an image of the object.

Digital holographic imaging has been demonstrated
in multiple small-particle systems and across visible and
X-ray wavelengths, see e.g. [3–11]. Examples of work
applying holography to aerosols are scarce, and to the
best of our knowledge have not yet been reported for
in situ imaging of aerosol particles in the 0:1225 mm size
range using visible light. This article will describe the
design and implementation of an apparatus that achieves
imaging of particles approximately 152500 mm in size,
and has the potential to image particles as small as 4 mm
given further design optimization. The basic concepts
involved are briefly reviewed and a validation measure-
ment using ragweed pollen particles is presented.
Saharan, Tunisian, and sodium chloride (NaCl) aerosols
are used to establish the in situ capability of the appara-
tus. Finally, the microscope-like focusing behavior of the
image-reconstruction process is demonstrated using a
single NaCl aerosol particle.

2. Digital in-line holography

The apparatus in this work is based on the so-called in-
line holographic configuration [3]. Here, the particle,
primary optical components, and detector are all co-
linearly arranged. The particle is illuminated by a mono-
chromatic spherical wave and the resulting interference
pattern formed by this reference wave and the light
scattered by the particle is recorded by a CCD detector.
Let the source of the reference wave be located at a
distance l from the particle and the detector at a distance
d. Provided that kl and kd are large enough to satisfy the
far-field conditions of [12], both the reference and scat-
tered waves will be transverse and spherical at the
detector and can be represented entirely by their scatter-
ing amplitudes

Eref ðrÞ ¼ expðikrÞ
r

Eref1 ðr̂Þ, EscaðrÞ ¼ expðikrÞ
r

Esca1 ðr̂Þ, ð1Þ

respectively. Then, the intensity of the total wave across
the detector’s face is [3]

IholoðrÞ ¼ ceo
r2

jEref1 ðr̂ÞþEsca1 ðr̂Þj2, ð2Þ

where c and eo are the vacuum speed of light and electric
permittivity, respectively. Expanding Eq. (2) gives

IholoðrÞ ¼ ceo
r2

fjEref1 ðr̂Þj2þjEsca1 ðr̂Þj2þ½Eref1 ðr̂Þ��Esca1 ðr̂Þ

þ½Esca1 ðr̂Þ��Eref1 ðr̂Þg: ð3Þ

The quantity ceor�2jEref1 ðr̂Þj2 ¼ Iref ðrÞ in Eq. (3) is the
intensity across the detector when no particle is present,
and hence can be considered a known quantity measured

before the introduction of an aerosol sample. Subtracting
this reference intensity from Eq. (3) and dividing the
remaining terms by it gives

IconðrÞ ¼ IholoðrÞ�Iref ðrÞ
Iref ðrÞ

¼
jEsca1 ðr̂Þj2

jEref1 ðr̂Þj2
þ

½Eref1 ðr̂Þ��Esca1 ðr̂Þþ½Esca1 ðr̂Þ��Eref1 ðr̂Þ
jEref1 ðr̂Þj2

: ð4Þ

Often, the intensity of the reference wave at the detector
is much greater than that of the scattered wave. This is
especially true in this work where the objects being
illuminated are small particles, as opposed to the macro-
scopic sized objects involved in other applications, see
e.g. [13–16]. This means that the term jEsca1 ðrÞj2=jEref1 ðrÞj2
in Eq. (4) can be neglected, leaving

IconðrÞC
½Eref1 ðr̂Þ��Esca1 ðr̂Þþ½Esca1 ðr̂Þ��Eref1 ðr̂Þ

jEref1 ðrÞj2
: ð5Þ

This intensity pattern, which is the difference between
two measurements – with and without the particle
present – is known as a contrast hologram. The key
characteristic of Icon is its linear dependence on the
amplitude of the particle’s scattered wave. This means
that the phase of the scattered wave over the detector is
encoded in the measurement. Consequently, Icon can be
used to reconstruct unambiguously an image of the
particle that closely resembles that obtained from con-
ventional microscopy.

Because there are many references describing the
theory behind digital holographic imaging, only a brief
description will be given here, see e.g. [17–19]. Basically,
the contrast hologram is envisioned as a transmission
diffraction-grating illuminated by a normally incident
plane wave, i.e., a reconstruction wave. The Fresnel–
Kirchhoff approximation is then used to describe the light
diffracted from this grating in a parallel plane separated
by a distance z from the grating along the z-axis. If z

corresponds to the distance between the particle and
detector during the hologram measurement (z=d) the
resulting diffraction pattern in this so-called reconstruc-
tion plane yields an image of the particle. The image is
essentially equivalent to a conventional microscope
image, although the resolution is typically less [3].

The advantage of using the Fresnel–Kirchhoff approx-
imation to calculate the reconstructed particle image is
that the approximation’s mathematical form is essentially
a discrete Fourier transform of the CCD pixel values
constituting Icon. This enables the use of the fast Fourier
transform (FFT) in the calculation, thus substantially
reducing the computation time required to render the
particle image. This is fortuitous, because in practice d is
not known to great enough accuracy to be able to
reconstruct an image from a single application of the
reconstruction routine. This inaccuracy is due to the
variation in particle positions in the aerosol stream as
they enter the measurement volume. Consequently, the
image-reconstruction stage consists of a focusing-like
procedure: First an initial image is reconstructed using
an estimate of d based on the experimental layout. Then,
the reconstruction plane is scanned along the z-axis in
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small steps until the reconstructed image comes into
focus. The ability to use the FFT for each of these
intermediate steps is thus crucial to the practical imple-
mentation of this technique.

The primary drawback to the in-line configuration is
that two images of the particle are produced in the
reconstruction stage [17]. The in-focus particle image is
always accompanied by a blurred twin image that is in-
focus in the mirror reconstruction plane, i.e., at z=�d. As
a consequence, the image quality is degraded. However,
as shown in [3], the effect of the twin on the in-focus
image becomes negligible if both d and the size of the CCD
pixel array are sufficiently large such that an imaging
resolution on the order of the wavelength can theoreti-
cally be achieved [3,4].

Another drawback of in-line holography is the pre-
sence of the zero frequency, or so-called DC, term in the
reconstructed image [20]. In the diffraction-grating
model, the reconstruction wave is uniform across the
hologram since it is planar and normally incident. Upon
application of the FFT to Icon, this wave then becomes a
strong DC contribution in the transform. The result is an
unwanted bright spot in the reconstructed image located
at the intersection of the optical axis (z-axis) with the
reconstruction plane. Fortunately, however, the DC term
can be nearly eliminated by subtracting from each pixel
value in Icon the average value of all the pixels [17]. Notice
that in doing this subtraction, the result is a new contrast
hologram with both positive and negative values;
whereas, its constituent holograms Iholo, Iref , and Icon, are
all inherently positive since they correspond to intensity
measurements.

The resolution of the resulting particle images is
limited by several factors related to diffraction and the
apparatus hardware: the CCD pixel size, CCD pixel-array
size w, particle-CCD distance d, and the illumination
wavelength l [17,4]. Given the configuration of the optical
elements in this work, the theoretical minimum resolva-
ble length scale is approximately 4 mm following [4].
However, the resolution achieved in practice is in the
range of 8210 mm due to stray-light noise and imperfec-
tions in the optical design. Fundamentally, the resolution
of this holographic configuration will not exceed what is
possible from a conventional optical microscope. How-
ever, as discussed earlier, it does provide the substantial
advantage of near real-time, in situ, and high through-put
imaging, which is not typically possible with conventional
microscopy.

3. Apparatus design and validation

The experimental apparatus, which is shown in Fig. 1,
consists of two primary subsystems: aerosol-particle
sensing and hologram recording. An aerosol stream is
delivered via a nozzle made from a plastic pipettor-tip to
the measurement volume where an optical trigger is used
to sense the presence of a particle [21,22]. This trigger
consists of crossed diode-laser beams, labeled (h) and (i)
in Fig. 1. These lasers have different wavelengths of 635
and 670 nm and intersect near the outlet nozzle deliver-
ing the aerosol. When a particle passes into this

intersection it scatters both wavelengths of light simulta-
neously. The scattered light is received by two photo-
multiplier (PMT) modules (Hamamatsu Corp., model
H6780-02), (j) in the figure, each sensitive to only one of
the two wavelengths. A series of signal-analysis units
determines if the signals produced by the PMT modules
are coincident. If so, this indicates the presence of a
particle at the trigger laser-beam intersection and a fire
signal is sent to a pulsed laser for the hologram recording.

The triggered light source is a 70 ns pulsed Nd:YAG
laser (Spectra Physics Lasers, Inc., model Y70-532Q),
frequency doubled to 532 nm. This light passes through
a Glan–Thompson polarizer to ensure linear polarization
(a) in Fig. 1. The light is then focused by lens (b) onto a
50 mm diameter pinhole (c). Next the primary lobe of this
pinhole diffraction pattern illuminates a second pinhole
(d) with a diameter of 25 mm. These pinholes ‘‘clean’’ the
beam improving its spatial coherence and enhancing the
quality of the hologram. All but the primary lobe of this
second pinhole pattern is blocked by iris (e) where lens (f)
then collimates the beam, which is brought to a focus by
lens (g) at a point approximately 2 mm from the aerosol
nozzle outlet. This 2 mm is the distance l in Section 2. In
this way, the aerosol particles are illuminated by what is
approximately a spherical wave originating from the
beam waist. The beam continues until reaching the CCD
detector (Finger Lakes Instrumentation, LLC, model
ML8300), at which point it expands to fill the entire pixel
array (5:4 mm pixel size, 3326�2504 pixel-array size).
The separation between the particle stream and the
detector is the d discussed in Section 2 and is approxi-
mately 8 cm. A small amount of the beam is scattered by
the particle (dashed line in Fig. 1), and this light interferes
with the remainder of the beam, i.e., the reference wave,
to form the interference pattern that becomes the digital
hologram Iholo.

To test the apparatus and provide a rough calibra-
tion of the image-reconstruction procedure, a compari-
son is made between a holographic and optical micro-
scope image of the same particle. This is done by placing
15:4 mm diameter NIST-traceable polystyrene latex
microspheres (Duke Scientific Corp.) on a microscope
slide and positioning the slide in the measurement
volume at the intersection of the trigger-beams. A holo-
gram is recorded, from which the image-reconstruction
procedure of Section 2 is followed. The slide is then
transferred to a microscope, where the same spheres are
located and imaged. Next, using a 1951 USAF glass-slide
resolution target (Edmund Optics), a scale factor is deter-
mined relating the microscope-image pixel number to
micrometers. Then, by comparing the holographic image
of a microsphere to the microscope image of the same
microsphere, an additional scale factor is determined
relating the hologram pixel number to micrometers. In
this way, the holographic images of all subsequent parti-
cles can be rendered in calibrated length (micrometers),
rather than pixel number. This calibration procedure is
approximate, however, because there is ambiguity in
determining the hologram pixel-number size of a given
microsphere: The contrast between the reconstructed
sphere-image and the background is not sharp, which
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can yield a scale factor that over- or under-determines the
particle size.

An example is presented in Fig. 2 demonstrating the
comparison between the holographic and microscope
images of the same particle. Here a cluster of ragweed
pollen particles is placed on a microscope slide, then
holographic and microscope images of the cluster are
obtained. By comparing these images, one can see that the
holographic apparatus successfully produces an accurate
image of the pollen cluster, with sufficient resolution to
discern individual pollen particles and even a faint sig-
nature of the single-particle surface roughness seen in the
microscope images. This corresponds to a resolution
roughly between 8210 mm, although a more rigorous
resolution analysis is not performed. Referring to the
measured and contrast holograms shown in this figure,
one can see how subtraction of the incident beam across
the CCD, i.e., Iref , removes noise due to imperfections in

the incident beam profile. This has the consequence of
producing a ‘‘cleaner’’ contrast hologram, which subse-
quently improves the particle image. Note that the holo-
graphic and microscope images of the cluster differ
slightly in overall size and detailed structural form.
Although it is clearly the same cluster in (c) and (d), the
differences are likely due to shifting of the cluster on the
microscope slide during transfer from the apparatus to
the microscope.

There are several unique aspects to the design of this
apparatus. By using the short focal-length lens (g) in Fig. 1
to form a beam waist near the particle, the light illumi-
nating the particle is more intense than it would be if
only the pinhole was used for illumination (as is usually
done). This results in a relative amplification of the
scattered wave at the detector and enhances the inter-
ference structure of the hologram leading to improved
particle-image quality. Using a pulsed laser permits the

Fig. 1. Diagram of the apparatus. The middle inset shows a schematic of the signal-analysis electronics used in the optical trigger to sense the presence of

a particle in the measurement volume. See text for further explanation.
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investigation of particle systems in motion. This also
greatly relaxes the strict mechanical-stability demands
typically required for holographic measurements. There
are no optical elements between the aerosol stream and
the CCD. This gives the apparatus a working distance of
several centimeters, which is substantially greater than
the single- to sub-millimeter working distance of a
microscope objective. Moreover, the absence of any opti-
cal elements between the detector and particle eliminates
‘‘noise’’ resulting from ambient dust that can collect on
the optical surfaces.

4. Applications

To further assess the imaging capabilities of the
apparatus, several aerosols consisting of complex-shaped
particles are examined. The first samples are sieved
Saharan and Tunisian sand, which are aerosolized using
an Erlenmeyer flask as follows: A small sample of the sand
is placed in the flask, then sealed with a stopper. Two
aluminum tubes pass through the stopper; one supplies
air to the flask, blowing the sand particles around, while
the other tube allows some of the airborne particles to
exit the flask and be transported to the aerosol nozzle in
the apparatus. Fig. 3 shows the contrast holograms along
with the resulting particle-image reconstructions for single

Saharan and Tunisian sand particles. For comparison, Fig. 4
shows microscope images of these sand samples. One can
see that the holographic images provide the same informa-
tion of overall particle size and morphology as the micro-
scope images. For example, the Saharan particles appear to
have less surface roughness than the Tunisian particles.
Note that unlike Fig. 2, the particles shown in the holo-
graphic reconstructions (Fig. 3) and microscope images
(Fig. 4) are not the same sand particles since the holographic
images are obtained from flowing particles.

Another unique capability of holographic imaging is
that some sense of the three-dimensional form of a
particle can be garnered from a single measurement.
The basic idea is analogous to the ‘‘focusing in’’ on a
particle in conventional microscopy. There, the micro-
scope objective is moved vertically to vary the distance
between it and the microscope slide, causing a blurred
image of a particle to evolve into a sharp image. If the
particle has sufficient thickness and transparence, differ-
ent depths within the particle can be brought into focus to
give a feel for the particle’s three-dimensional structure.
This same process can be done in digital holography by
computationally varying the distance d used in the image-
reconstruction stage, as is shown in [3]. The resulting
sequence of images gives the same impression of focusing
in on the particle as one gets from microscopy. However,

Fig. 2. Validation of the holographic imaging apparatus. Plots (a) and (b) show the measured Iholo (digital) and corresponding contrast Icon holograms,

respectively, for a cluster of ragweed pollen particles on a microscope slide located at the intersection of the trigger-beams, recall Fig. 1. Image (c) shows

the reconstructed image resulting from (b) whereas (d) shows a conventional microscope image of the same cluster.
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unlike microscopy where an image must be recorded
at each ‘‘focus depth,’’ the holographic route can obtain
a similar image-sequence from the (single) contrast
hologram only.

Fig. 5 shows an example of this holographic focusing
process. The top row displays conventional microscope
images of a NaCl crystal at different focus depths. The

bottom row shows a holographic image-sequence for an
aerosolized NaCl particle that is produced by scanning
the reconstruction plane along the z-axis around z=d. The
particle in the holographic images is delivered to the
apparatus in aerosol form by drying a salt solution on a
hotplate and aerosolizing the resulting powder using the
Erlenmeyer generator described in Section 3. One can

Fig. 3. Saharan and Tunisian sand particles. Images (a) and (b) show the contrast hologram Icon and corresponding reconstructed image for a single

Saharan sand particle. Images (c) and (d) show the same for a single Tunisian sand particle.

Fig. 4. Microscope images of (a) Saharan and (b) Tunisian sand. The particles seen here are taken from the same sand samples used in Fig. 3, but unlike

the ragweed in Fig. 2, these particles are not the exact same particles imaged holographically.
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clearly see the strong similarity in the focusing behavior
of the two imaging techniques.

5. Comments

The in situ images of aerosol particles presented here
are not the only documented examples. Sorensen et al.
have obtained images of the particles constituting hydro-
carbon-flame soot at various stages in soot formation, i.e.,
as a function of height in a flame [23,24]. Here a 10� -
power photomicroscope is mated to a conventional film-
camera and a 1:5 ms Xe flash lamp is used for particle
illumination. With this arrangement, particles in the
range of roughly 52100 mm are imaged, which covers
the same particle size range considered in our work. One
might then wonder what advantage the holographic
approach offers over this photomicroscope direct-imaging.

First, the photomicroscope images are obtained photo-
graphically, i.e., using film, requiring chemical processing.
The holograms, however, are entirely digitally recorded
and the resulting images are computationally rendered.
Second, and perhaps most important, the photomicro-
scope images have a very narrow depth of field, and only
particles constrained within a narrow volume are in-
focus; whereas, for holographic techniques the focusing
is done computationally, after the hologram is recorded.
This enables the focusing process described in Section 4,
which can be used to image multiple particles present at

different locations in the measurement volume as demon-
strated in [3]. Moreover, this can be done from a single
hologram recording. To do this with the photomicroscope
would require obtaining a series of exposures with the
microscope objective positioned at different distances
from the measurement volume. Thus, if the particles are
in motion, as they are in flow-through applications, a
series of exposures would prevent the imaging of multiple
particles present at a given instant in the measurement
volume.

As mentioned in Section 3, an inherent advantage of
the holographic design is that there are no optical ele-
ments between the particle and detector. Thus, there are
no surfaces for ambient dust to collect on and become
sources of stray light, nor are there any lens-based
aberrations and multiple reflections. Both of these con-
cerns are present in the photomicroscope approach. The
absence of these optical elements in the holographic
design is especially advantageous when one wishes to
investigate particles that are roughly the same size as
ambient dust.

6. Conclusion

This work demonstrates the feasibility of imaging
single and multiple aerosol particles in situ using digital
in-line holography. Imaging is demonstrated on ragweed
pollen, Saharan and Tunisian sand, and NaCl particles; a

Fig. 5. Focusing behavior of the holographic image-reconstruction process. The top row shows microscope images of a NaCl crystal on a microscope slide

at three different focus depths (a)–(c). The bottom row shows the reconstructed images of a NaCl aerosol particle when the reconstruction plane is at

three positions for z: zod for (a), z=d for (b), i.e., in-focus, and z4d for (c).
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range of overall particle-size covering approximately
152500 mm. These images are computationally recon-
structed from the digitally recorded holograms and compare
well to the corresponding microscope images. Although the
resolution of the holographic images is less than those from
the microscope, one is able to clearly discern single-particle
size and shape. Moreover, the ability to computationally
render the images allows the application of numerical
operations to improve image quality, whereas the analogs
of such operations in conventional optical imaging would be
difficult to implement.
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Abstract—We describe a computational imaging technique to
extend the depth-of-field of a 94-GHz imaging system. The tech-
nique uses a cubic phase element in the pupil plane of the system
to render system operation relatively insensitive to object distance.
However, the cubic phase element also introduces aberrations but,
since these are fixed and known, we remove them using post-de-
tection signal processing. We present experimental results that
validate system performance and indicate a greater than four-fold
increase in depth-of-field from 17” to greater than 68”.

Index Terms—Computational imaging, extended depth of field,
millimeter wave imaging.

I. INTRODUCTION

T HE ability of gigahertz and terahertz frequencies to pene-
trate materials that are impenetrable at optical frequencies

has prompted recent interest in the development of millimeter
wave sources and detectors [1]. Applications of this capability
include, for example, the detection of concealed weapons under
clothing [2], [3]. However, unlike the stationary figures shown
in Fig. 1, a more typical scenario for this application is screening
individuals at points of ingress, such as the entrance to a building
or the secured portion of an airport. To enhance the performance
of screening systems, one would prefer to observe individuals
as long as possible as they pass through a volume. This im-
proves the chances of detecting a hidden object. (It might also
reduce bottlenecks created at portals.) However, wavelength and
system considerations limit focused imaging to only a narrow
volume in depth, or depth-of-field. Thus, a screener has only
a short amount of time to detect the presence or absence of a
concealed weapon. Extending the depth-of-field provides the
screener with more time to observe an individual.

A similar problem occurs in iris recognition for security
applications, for example, logging-on to a computer system. In
this situation the narrow depth of field produces unnatural head
movements as a user seeks to place his or her iris in the object
plane of the optical system. Extending the depth-of-field for
these systems has been addressed using computational imaging
techniques [4]–[7]. By computational imaging, we mean an
imaging system whose pre-detection optics and post-detection
signal processing are designed jointly to achieve a result that
is not possible using only optics or only signal processing [8],
[9]. For example, placing an optical element with cubic-phase
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Fig. 1. Gigahertz imaging through clothing. (a) Visible image of scene. (b)
94-GHz image of weapons concealed under clothing.

Fig. 2. 94-GHz scanning imaging system. (a) Image of system. (b) Schematic
representation with measured dimensions.

in the pupil plane of the optical system renders system op-
eration relatively insensitive to object distance. However, the
cubic phase also generates an aberrated image. But, since the
aberrations are known, one can correct them using simple
post-detection signal processing. Since the system response
is effectively invariant to object location, the combination of
optical and electronic processing yields a system with larger
depth-of-field than a conventional system.

In this work we describe our application of this technique
for extended depth-of-field imaging to a 94-GHz system
and present experimental results to verify its performance.
In Section II we describe our imaging system and present a
mathematical description of its operation with and without
extended depth-of-field. We describe design and fabrication of
the cubic-phase element in Section III and present experimental
results in Section IV. Section V discusses the signal processing
required by the cubic phase system to realize the extended
depth and presents the results from this processing. We end in
Section VI with summary remarks on our approach.

II. 94-GHZ IMAGING SYSTEM

Our imaging system, represented in Fig. 2, is a 94-GHz
Stokes-vector radiometer used for millimeter wave phe-
nomenology measurements [10]. It is a single-beam system

0018-926X/$25.00 © 2009 IEEE
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that forms an image by scanning in azimuth and elevation.
The radiometer has a thermal sensitivity of 0.3 K with a 30-ms
integration time and 1-GHz bandwidth per pixel. A Cassegrain
antenna is mounted to the front of the radiometer receiver. It has
a 24”-diameter primary parabolic reflector and a 1.75”-diameter
secondary hyperbolic reflector. The position of the hyperbolic
secondary is variable.

If we model the 94-GHz imager as a linear, spatially inco-
herent, quasi-monochromatic system, the intensity of the de-
tected image can be represented as a convolution between the
intensity of the image predicted by geometrical optics with the
system point spread function [11]

(1)

where represents a two-dimensional convolution. The func-
tion represents the inverted, magnified image of the ob-
ject that a ray-optics analysis of the system predicts

(2)

If the object and image distances are and , respectively,
the magnification is

(3)

For the purposes of geometrical analysis, we can model the
system as a single lens imaging system with (152.4
mm)

(4)

The value of is based on measurements of the antenna. We
adjusted the position of hyperbolic element so that nominal op-
eration of the imager is with (4572 mm). Thus, the
effective focal length of the system is (147.6 mm).

The second term in (1), , is the incoherent point spread
function (PSF). It accounts for wave propagation through the
aperture

(5)

where is the coherent point spread function. The
function is the inverse Fourier transform of the system
pupil function

(6)

As a consequence, the optical transfer function (OTF)
associated with the PSF is the autocorrelation of the pupil func-
tion with frequency axes scaled by

(7)

where represents two-dimensional correlation. For example,
for a circular aperture of diameter

(8)

the PSF is, to within a constant

(9)

Ray analysis of our system confirmed that the parabolic primary
forms the aperture stop, i.e., it defines the location of the pupil
plane.

Displacement of an object from the nominal object plane
introduces a phase error in the pupil function [11]

(10)

where

(11)

The phase error increases the width of a point response. If the
displacement and phase errors are small, the detector (either
human or machine) may be unable to resolve the increase and
the image is perceived as in-focus.

The distance in object space over which an object can be
placed and still produce an in-focus image is the system’s
depth-of-field

(12)

where formulas for and depend upon system applica-
tion. Many different definitions exist. For demonstration pur-
poses, we use a conventional definition based on the spatial ex-
tent of the point response [12]

(13)

and

(14)
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Fig. 3. Maximum relative pupil phase error as a function of object distance.
The shaded region indicates a conventional depth of field. The discrete points
indicate object distances used in experiments.

Under the assumptions that is defined by the Rayleigh criteria,
the imager operates in the far-field , and the lens aper-
ture is large compared to a wavelength

(15)

For a 94 GHz-imager with and ,
which ranges from 175.2” to 192.6”. Fig. 3 indicates the

maximum relative phase error as a function of object distance
and also indicates the region we have defined as being in the
depth-of-field. (The maximum error for a given plane occurs at
the edge of the aperture, .)

Equation (15) explains mathematically what any good pho-
tographer already knows: one can increase by decreasing
(“stopping down”) the lens aperture . However, this reduces
throughput and degrades the diffraction limited resolution.
Alternatively, it has been shown at optical wavelengths that a
cubic-phase element placed in the pupil plane of an imaging
system in combination with post-detection processing can also
increase but without sacrificing either throughput or
resolution.

The cubic phase element is

(16)

where

(17)

The phase function is separable in the - and -spatial frequen-
cies and has spatial extent and along the respective axes.
The constant represents the strength of the cubic phase. Along
one axis the total phase change is ; the phase change across
a diagonal is . In the simulations presented below, we mod-
ified the model for slightly and included an appropri-
ately sized central obscuration to account for the effect of rays
blocked by the secondary mirror.

Fig. 4. Modulation transfer function for systems with different strength cubic
phase: (a) , (b) , and (c) . The MTFs for four different
object distances are represented: 180” (solid line), 163” (dashed line), 146.5”
(dot-dashed line), and 113” (dotted line).

Fig. 5. Simulated point spread functions for conventional imaging and imaging
with a cubic phase. Simulated PSFs for conventional imaging system at (a) 180”,
(b) 146.5”, and (c) 113”. (d)-(f) Simulated PSFs for an imaging system with
cubic phase at the same object distances as (a)-(c).

Representations of the magnitude transfer function (MTF),
the magnitude of the OTF , in cross-section are repre-
sented in Fig. 4 for three different values of and
different values of misfocus. (The misfocused planes are located
roughly at 1, 2, and 4 times the . The values noted in the
figure are measured distances used in our experiments.) A con-
ventional system with no cubic phase ( ) is represented in
Fig. 4(a). Note that the MTFs differ for each value of misfocus.
Compensating for misfocus therefore requires a priori knowl-
edge of where an object is located. Even if this information were
known, due to the presence of zeros in the MTFs, inverting any
one of them is ill-posed and will generate noisy results.

In contrast, the MTFs for cubic phase elements with non-zero
values of are relatively constant over an extended range. Note
that the larger the value of the larger the range over which
the system is insensitive to object location. However, increasing

reduces the magnitude of the MTF, which is detrimental for
applications with low signal to noise ratios. But, because the
MTFs do not contain any zeros, their inversion is better condi-
tioned than the MTFs for a conventional system.

Simulations of the point spread functions one can expect from
our imaging system with and without a cubic phase element
with are represented in Fig. 5. The response of the cubic
phase system is relatively unchanged, whereas the response of
the conventional system changes considerably. We address in
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Fig. 6. Representation of the process for converting the cubic phase to a surface
depth profile. Only a one-dimensional representation is shown but extensions to
two-dimensions are straightforward.

Section V the processing required by the cubic phase system to
produce a well-defined spot.

III. CUBIC PHASE DESIGN AND FABRICATION

We fabricated a cubic phase element with from Rex-
olite using a 3-axis computerized numerical control router. The
router has a 0.1969”-minimum feature size (5 mm) and provides
0.0002” position accuracy. Element fabrication was a
two-step process.

In the first step we machined a continuous surface profile by
sampling the cubic phase , converting phase to depth,
and using a cubic spline to insure a smooth transition between
depth samples. The phase samples were generated according to

(18)

We used a sampling distance (2.54 mm) to insure
overlapping features. Given , .

Phase values were converted to depth using

(19)

The modulo- operator limits the phase to only a single wave-
length and reduces element weight. See Fig. 6. The diffractive
characteristics introduced in this conversion have little effect on
the response of the element [5], [6]. At 94 GHz Rexolite has a
refractive index ; thus, a depth change of 0.2129” (5.4
mm) in the material generates a -phase change in the wave-
front. The second step sharpened the edges at phase discontinu-

Fig. 7. Fabricated cubic phase element. (a) Side-view and (b) front-view of
cubic phase element mounted to imaging system. (c) Detail of fabricated ele-
ment. The region displayed is in the lower right of the phase element, which is
highlighted in (b).

Fig. 8. Measured point spread functions for conventional imaging and imaging
with a cubic phase. PSFs for conventional imaging system at (a) 180”, (b) 146.5”
and (c) 113”. (d)-(f) PSFs for a system with cubic phase at the same object
distances for (a)-(c).

ities to within . The final element is shown in Fig. 7
mounted to the antenna.

IV. EXPERIMENTAL RESULTS

To validate the performance of the cubic phase element to
extend , we measured the PSF of a conventional system
and the cubic-based system at three distances, 113” (2870
mm), 146.5” (3721 m), and 180” (4572 mm). Since the
is asymmetric with respect to the object plane and collapses
more quickly as the object plane moves toward the system, we
measured only this behavior. The out-of-focus object planes
correspond to displacements that are twice and four times the
calculated . We also imaged an extended object at the
same distances using both systems.

To measure the PSF we imaged a point source generated by
an open waveguide with dimensions 0.050” 0.100”. Given
that the operating frequency was 94 GHz, the aperture in wave-
lengths is . The output power was . The
results are represented in Fig. 8. The experimental results agree
qualitatively with the simulations presented in Fig. 5. The fig-
ures are normalized to the peak value measured, which occurs
in Fig. 8(a).

The extended object used in our experiments is represented
in Fig. 9(a). The spoke pattern produces 50–50 square waves
whose frequencies vary linearly from low values at the circum-
ference to high values in its center. Given that the pattern con-
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Fig. 9. (a) Representation of the extended object used to compare conventional
and cubic-phase imaging. (b) Schematic of object illumination.

TABLE I
PARAMETERS FOR EXTENDED OBJECT IMAGING

tains 8 periods within one rotation, the period of the imaged
square wave as a function of radius is

(20)

and the corresponding spatial frequency is

(21)

The maximum radius and the minimum
. Since the cutoff frequency for a circular aperture is

(22)

the corresponding radius is determined by equating (21) and
(22)

(23)

Radii within the range generate frequencies
in the passband of the optical system. Higher frequencies con-
tained in the region are cutoff. Table I lists
the magnification, minimum and maximum spatial frequencies,
and the cutoff radius as a fraction of the maximum radius for
the three object distances used in the experiments. We note that
beyond 304” the system is incapable of resolving the target at
all.

The extended object was generated by placing a metal plate
cut-out of Fig. 9(a) in front of a metal reflector angled at 45
to a bath of liquid nitrogen. See Fig. 9(b). This arrangement
produces a contrast between the surrounding metal reflecting

Fig. 10. Images of an extended object for conventional imaging and imaging
with a cubic phase. Images from a conventional imaging system at (a) 180”, (b)
146.5” and (c) 113”. (d)-(f) Images from a system with cubic phase at the same
object distances for (a)-(c).

ambient room temperature and the temperature of the liquid ni-
trogen reflected through the cut-out. The images captured by the
system are represented in Fig. 10.

Note that the MTF of the conventional system produces im-
ages with significant high frequency loss. In contrast, the entire
band of frequencies between and can be seen in the im-
ages captured using a cubic phase element. Even without signal
processing these images retain more discernable characteristics
of the spoke target than the image from the conventional system.

V. POST-DETECTION SIGNAL PROCESSING AND RESULTS

Removing the artifacts of the aberrations introduced by
the cubic phase element requires post-detection electronic
processing. We assumed a linear process

(24)

and implemented as a Wiener filter in Fourier space

(25)

The optical transfer function (OTF) associated with
the cubic phase element was estimated from the experimentally
measured point response images. The parameter is a mea-
sure of the signal-to-noise ratio. The functions and

are the expected power spectra of the object and noise,
respectively. Research has shown that Wiener power spectra
are good assumptions for natural scenes [13]. We adjusted the
mean spatial detail parameter to produce restored PSFs with
widths comparable to that of the experimentally measured fo-
cused point. Further, we assumed a flat noise spectrum with

.
Reconstructed PSFs are represented in Fig. 11. In

Fig. 11(a)–(c), the cubic OTF was estimated from the PSF
measured experimentally at 146.5” and the subsequent re-
construction filter applied to all the images. In Fig. 11(d)–(f),
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Fig. 11. Processed point responses from a system with cubic phase. Images
processed using the PSF for at (a) 180”, (b) 146.5” and (c) 113”.
(d)-(f) Images processed using the PSF for .

Fig. 12. Processed images from a system with cubic phase. Images processed
using the PSF for at (a) 180”, (b) 146.5” and (c) 113”. (d)-(f)
Images processed using the PSF for .

the cubic OTF was estimated from the experiment PSF at
180”. From Fig. 4, data collected at 113” has significant high
frequency loss in comparison to that collected at both 146.5”
and 180”. We, therefore, did not use this data to create a
reconstruction filter.

In both instances the best reconstruction occurs for the image
matched to the filter and the noisest reconstruction is at 113”,
which one would expect. Nonetheless, the reconstructions of
the point response are comparable in terms of spatial scale to
the in-focus response of the conventional system. Compare
Fig. 11(a), (b), (d), and (e) to Fig. 8(a). Thus, we have extended
the region over which the system generates a diffraction-limited
spot from 5” in front of the focal plane to 34”. Since we expect
similar behavior for objects beyond the focal plane, the depth
of field has been expanded in that direction by at least 34” as
well but we expect considerably more.

This behavior is reflected also in the reconstruction of the ex-
tended object represented in Fig. 12. For both reconstructions,
not only are the images at 180” comparable to the focused image
from the conventional system but the images at 146.5” are com-
parable as well. In comparison to the image at 146.5” from the
conventional system, the reconstructed images display higher
contrast and higher resolution. Note especially the reflection off

the metal plate on the right-hand side, which is clearly visible in
the reconstructions but is apparent only in the focused conven-
tional image in Fig. 10.

VI. SUMMARY

We applied a computational imaging technique for extending
depth-of-field at optical frequencies to a millimeter wave
imaging system. The technique requires inserting a cubic
phase element in the pupil plane of an imaging system and
subsequent post-detection signal processing. We designed and
fabricated the cubic phase element in Rexolite and validated its
performance experimentally.

In some applications, a priori range information can be used
to improve estimated PSFs and thereby improve restoration.
Further, non-linear image restoration techniques incorporating
a priori knowledge of the scene can improve restoration relative
to linear restoration.

A critical difference between the performance of millimeter
wave imaging systems and imaging systems for optical and
infrared wavelengths is the underlying phenomonology and
availability of technology, especially detector arrays. Millimeter
wave systems image temperature contrasts. Careful analysis
of noise and contrast in such systems is necessary to assess
the impact of inserting an element into the optical train whose
amplitude transfer function, although flat, is relatively low. A
more in-depth analysis should also consider the coherence and
spectral bandwidth of the illumination.

In addition, in terms of practical application, one needs to
consider the scale of the optical system and the lack of large
arrays of millimeter wave detectors on system design. Whereas
one can design an optical staring imager, millimeter wave
systems will continue to be scanning systems until detector
array technology matures. Even so, given the physical con-
straint on the security system mentioned in the introduction, it
is unlikely that a such system will have a detector array larger
than 200 200. Nonetheless, the applicability and advantage of
computational imaging techniques to millimeter wave systems
has been demonstrated.
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We demonstrate coherent combining (phase locking) of seven laser beams emerging from an adaptive fiber-
collimator array over a 7km atmospheric propagation path using a target-in-the-loop (TIL) setting. Adaptive control
of the piston and the tip and tilt wavefront phase at each fiber-collimator subaperture resulted in automatic focusing
of the combined beam onto an unresolved retroreflector target (corner cube) with precompensation of quasi-static
and atmospheric turbulence-induced phase aberrations. Both phase locking (piston) and tip–tilt control were per-
formed by maximizing the target-return optical power using iterative stochastic parallel gradient descent (SPGD)
techniques. The performance of TIL coherent beam combining and atmospheric mitigation was significantly
increased by using an SPGD control variation that accounts for the round-trip propagation delay (delayed
SPGD). © 2011 Optical Society of America
OCIS codes: 140.3298, 010.1285, 010.1080.

Coherent combining of laser beams that originate from a
fiber-based multichannel master oscillator power ampli-
fier (MOPA) laser system at a remotely located target
after propagation through the atmosphere requires
adaptive compensation of both random phase shifts in-
troduced by the MOPA system and atmospheric turbu-
lence-induced phase aberrations [1,2]. Coherent beam
combining, also referred to as phase locking, has been
demonstrated in several laboratory-based experiments
(see, e.g., [3–7]) and over a 408m long distance in an out-
door experiment with a cooperative target [8].
In this Letter, we report the results of the first (to our

best knowledge) successful coherent beam combining
and turbulence mitigation experiments over an extended-
length atmospheric propagation path in a target-in-the-
loop (TIL) setting with a noncooperative target using
adaptive control of the piston (subaperture-averaged
phase) and tip and tilt corrections at each fiber-array sub-
aperture. The round-trip propagation delay issue—a ma-
jor obstacle for TIL adaptive optics techniques—was
overcome by utilizing the recently proposed “delayed”
stochastic parallel gradient descent (SPGD) wavefront
control technique [9], which allowed the duration be-
tween wavefront control updates to be shorter than
the round-trip propagation delay and resulted in a signif-
icant increase of compensation bandwidths.
The setup used in the experiments (Fig. 1) consists of

the following major subsystems: (i) a seven-channel
master oscillator power amplifier (MOPA) system based
on single-mode, polarization-maintaining (PM) fiber ele-
ments; (ii) a fiber-collimator array with built-in capabil-
ities for electronic control of wavefront phase tip and
tilts at each fiber-collimator subaperture; (iii) an unre-
solved target (a corner-cube retroreflector) located at
7km distance; (iv) a receiver telescope for measure-
ments of the target-return optical wave power, referred
to as the power-in-the-bucket (PIB) metric, J; and (v) a

control unit that includes piston (phase-locking) and
tip–tilt phase control subsystems.

In the MOPA system, the light from a narrow-linewidth
(∼5kHz) fiber laser with wavelength λ ¼ 1064 nm and
single-mode PM fiber output is divided into seven chan-
nels using a fiber splitter with integrated, electrically con-
trolled phase-shifting elements from EOSPACE [10]. The
MOPA system output fibers, each with a mode field dia-
meter of 7 μm, are connected to a fiber-collimator array
(Optonicus INFA 7C [11]). In the fiber array, the tip of
each output fiber is placed in the focus of the correspond-
ing collimating aspheric lens with a clear aperture diam-
eter of d ¼ 33mm and a focal distance of f ¼ 174mm.
The closest center-to-center distance between the colli-
mating lenses in the array is 37mm, and the entire fiber-
array aperture is 107mm. The output fibers are mounted
inside special fiber-positioner devices with piezo-
actuators that can independently displace the fiber tips
within a �35 μm range in two lateral directions [11,12].
These fiber-tip displacements result in controllable devia-
tions of the propagation directions of the outgoing beams
anywhere within a �0:2mrad solid angle about the opti-
cal axis and were used to provide precise overlapping of
the outgoing beams at a remote target (electronic beam
focusing) as well as precompensation of wavefront phase
tip and tilt static and dynamic aberrations [4].

The outgoing beams with a combined optical power of
12mWwere transmitted through a window located in the
Intelligent Optics Laboratory at the fifth floor of the
University of Dayton’s College Park Center building
(15m above ground) and propagated toward the corner-
cube retroreflector (50mm aperture) located in a shed on
the rooftop of a 40m high building 7km away. The la-
boratory double-glass window introduced significant
phase aberrations with a peak-to-valley (PV) amplitude
of ∼1:0λ over the fiber-array aperture and ∼λ=4 PV over
fiber-array subapertures. The impact of these quasi-static
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aberrations was partially mitigated using the adaptive
tip–tilt control system.
The optical wave returning from the target entered a

receiver telescope (aperture 20 cm) located near the fi-
ber-array transmitter, as shown in Fig. 1(b). The received
light was divided between a CCD camera and a photo-
diode for telescope pointing (target imaging) and the
received light power measurements, respectively. The
photodiode output signal was used as the performance
metric, J, for both the phase locking and the tip–tilt con-
trol subsystems.
The two parallel operating control subsystems were

both based on the maximization of the PIB metric, J,
using an asynchronous SPGD control technique with sig-
nificantly different (∼48 times) iteration rates [13]. The
tip–tilt control subsystem with 14 control channels (two
per fiber collimator) utilized a personal computer with
analog input/output cards and a set of high-voltage am-
plifiers (�70V) for generation of the control voltages
fuðnÞ

j g (j ¼ 1;…; 14), which were applied to the piezo-
actuators. At each tip–tilt iteration, ðnÞ, a control voltage
update was performed using the conventional SPGD
algorithm [13]

uðnþ1Þ
j ¼ uðnÞ

j þ γδuðnÞ
j ½JðnÞ

þ − JðnÞ− �; ð1Þ

where γ is the gain coefficient and fδuðnÞ
j g is a set of 14

small-amplitude random control voltage changes, de-
noted as perturbations. The perturbations in the form

fδuðnÞ
j g (positive) and f−δuðnÞ

j g (negative) are applied be-
tween two sequential updates of the control voltages. In

Eq. (1), JðnÞ
þ and JðnÞ− are the measured PIB metric values

that correspond to the positive and negative perturba-
tions. The characteristic time τSPGD (SPGD cycle time)
between sequential control voltage updates is given by

τSPGD ¼ 2ðτpert þ τresp þ τJ þ τdelayÞ; ð2Þ

where τpert is the time required to perturb the control vol-
tages, τresp is the delay between a control voltage change
and the corresponding optical phase response, τJ is the
PIB metric measurement time, and τdelay is the delay be-
tween an induced wavefront phase variation and the cor-
responding metric change. The last term in Eq. (2) is the
double-pass delay τdelay ¼ 2L=c caused by the optical
wave propagation over the distance L with the speed of
light, c (in the experimental setting L ¼ 7 km and τdelay ¼
46:7 μs). The tip–tilt SPGD cycle time, τSPGD in Eq. (2), is
mainly limited by the time response of the piezo-
actuators, τresp ≈ 120 μs, which is significantly longer than
τdelay and τJ ≈ 20 μs. The resulting tip–tilt subsystem
SPGD iteration rate f SPGD ¼ 1=τSPGD was f SPGD ≈ 3 kHz.

The piston phase control subsystem utilized the fiber-
integrated phase shifters of theMOPA system,which have
a short response time of τresp < 10 ns so that the limiting
factor for increasing the SPGD control iteration rate is the
double-pass delay time τdelay. Considering τdelay ¼ 46:7 μs,
the piston-phase control SPGD cycle time is at least
∼100 μs and thus f SPGD ≤ 10 kHz. Note that the SPGDþ
CU 8D controller fromOptonicus used in the experiments
can provide much higher iteration rates (up to ∼250 kHz)
[10]. Therefore, the propagation delay imposed the
limit on the operational bandwidth of the conventional
SPGD-based piston-phase control subsystem and its cap-
ability for mitigation of atmospheric turbulence-induced
aberrations.

In order to overcome this problem, we utilized in the
piston-phase control subsystem the recently proposed
delayed-SPGD wavefront control algorithm, where the
iterative procedure of the control voltage update during
each iteration cycle ðnÞ can be described by the following
rule [9]:

uðnþ1Þ
i ¼ uðnÞ

i þ γ½JðnÞ
þ − JðnÞ− �δuðn−ΔnÞ

i ; ði ¼ 1;…; 7Þ:
ð3Þ

Here the integer number Δn > 0 is the delay parameter
that accounts for the double-pass propagation time. In

Eq. (3),Δn links the variation of the metric δJðnÞ ¼ ½JðnÞ
þ −

JðnÞ− � measured during iteration ðnÞ to the control signal

perturbations fδuðn−ΔnÞ
i g, which caused the metric

change. The delay parameter can be calculated as the
closest integer number to the ratio τdelay=τSPGD. With
the SPGD cycle time τSPGD ¼ 7:0 μsec (iteration rate
f SPGD ≈ 143 kHz) and τdelay ¼ 46:7 μs, we obtain Δn ¼ 7.

During the experiments, the fiber-collimator array con-
trol system was repeating 50 sequences of 5:25 s long
trials comprising three operational states of 1:75 s each.
These stages are indicated in Fig. 2 as “feedback off” (all
control loops were off), “piston control on,” and “piston
and tip–tilt control on.” In the “piston control on” state,
the piston-phase (phase-locking) control system was
turned on. During the last state, both the piston and
tip–tilt control subsystems were switched on. Values for
the PIB metric, J, were recorded for all 50 trials by the
supervising controller at a rate of about 10 k samples=s.

Fig. 1. (Color online) (a) Schematic of the experimental setup
used for coherent beam combining over a 7 km atmospheric
propagation path. (b) Photo of the fiber-array transmitter with
the pointing telescope (right) and the receiver telescope (left).
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As shown in Fig. 1(a), the retroreflector at the target
plane was mounted behind a hole in a cardboard screen
and a small piece of retroreflecting tape (∼6mm dia-
meter) was glued onto the center of the retroreflector’s
cover glass. An near-IR camera with a wide-angle objec-
tive was placed about 1m in front and 20 cm to the side of
the retroreflector and used to image the irradiance pat-
tern (beam footprint) on the screen and the retrotape.
Figure 2(a) shows the time dependence of the trial-

averaged PIB metric hJi for two different settings of
the piston-phase controller: the first curve (red, lower)
corresponds to the conventional SPGD algorithm
(1) and the second curve (blue, upper) to the delayed al-
gorithm (3). In comparison to the open loop state, the
average PIB metric, hJi, increased 3.7-fold for the con-
ventional and 5.6-fold for the delayed-SPGD control.
Recorded target-plane beam footprints (averages of

270 frames) for the cases with feedback off and piston-
phase control on can be seen in Figs. 2(b) and 2(c),
respectively. The dark annular region in the center cor-
responds to the circular opening for the retroreflector
with the retrotape spot in the center. A comparison of
these two images demonstrates the higher concentration
of the beam energy at the retroreflector when phase con-
trol is on and proves that the PIB metric maximization
locks the beam phases at the target plane.
The experimental results in Fig. 2(a) correspond to at-

mospheric turbulence conditions characterized by a
path-averaged refractive index structure parameter C2

n ¼
6 × 10−16 m−2=3 (measured by a Scintec BLS2000 scintill-
ometer [14]) and a normalized standard deviation of
metric fluctuations σJ=hJi ¼ 0:92 (open loop). Piston

control resulted not only in the increase of the average
metric value, but also led to a decrease in the metric
fluctuation level down to σJ=hJi ¼ 0:52 for the conven-
tional and to 0.42 for the delayed SPGD controllers.

Note that the tip–tilt control subsystem, which was
turned on during the last state of the adaptation trials,
did not result in a further metric increase (and caused
only a slight change in metric fluctuations due to the
tip–tilt perturbations). This can be explained by taking
into account the 48-fold faster updates of the piston-
phase control system, which can provide a partial mitiga-
tion of overall wavefront phase tip and tilt aberrations
using a stepwise (piston) approximation prior to a reac-
tion of the tip–tilt subsystem. However, our experiments
showed that efficient coherent combining with piston-
phase control was only possible if the transmitted beams
overlap well at the target, which was achieved by turning
on the tip–tilt control subsystem for a few seconds in ad-
dition to piston control. In the experiments described
above, tip–tilt control voltages were fixed at the end
of each adaptation trial and provided sufficient overlap-
ping during the piston control stage of the next adapta-
tion cycle. Without a tip–tilt control phase in each trial,
we observed a slow (on the order of 100–200 s) decline in
coherent beam combining efficiency, indicating that sta-
tic tip–tilt control voltages do not maintain efficient over-
lapping of the outgoing beams at the target over a longer
time period, mostly due to thermal expansion-induced
system misalignments.

This work was performed in the frame of collaborative
agreement W911NF-09-2-0040 between the United States
Army Research Laboratory and the University of Dayton.
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Fig. 2. (Color online) Experimental results from the coherent
beam combining experiment: (a) average PIB metric evolution
curve, hJi and (b), (c) averaged irradiance distribution at the
target plane with feedback off (b) and piston control on (c).
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Atmospheric turbulence is a serious problem for satellite and aircraft-to-ground based classical
imaging. Taking advantage of the natural, nonfactorizable, point-to-point correlation of thermal
light, this experiment demonstrated turbulence-free ghost imaging, which will be extremely useful
for these applications. In addition, this observation suggests that the nontrivial intensity-intensity
correlation of thermal light cannot be caused by the statistical correlation of intensity fluctuations.
© 2011 American Institute of Physics. �doi:10.1063/1.3567931�

One of the most surprising consequences of quantum
mechanics is the nonlocal correlation of a multi-particle sys-
tem measured by joint-detection of distant particle detectors.
Ghost imaging is one such phenomena. Recently Meyers et
al.1,2 performed ghost imaging of remote objects by measur-
ing reflected photons, thereby making ghost imaging practi-
cal for applications. Two types of ghost imaging have been
experimentally demonstrated since 1995. One type of ghost
imaging uses entangled photon pairs as the light source3 and
another type of ghost imaging uses chaotic thermal light.1,4

The nonlocal multiphoton interference nature of ghost imag-
ing determines its peculiar features: �1� it is nonlocal; �2� its
imaging resolution differs from that of classical.

Recently there has been increased interest in ghost im-
aging through turbulence and related index of refraction dis-
tortions as demonstrated by theoretical5 and experimental
papers.2,6 However, thermal light ghost imaging through tur-
bulence has not been previously reported. In this letter, we
wish to report a recent ghost imaging experiment with ther-
mal light which demonstrated another peculiar yet useful
feature of ghost imaging: “turbulence-free,” i.e., any index of
refraction fluctuation of turbulence in the optical path will
not affect the quality of the ghost image. This important fea-
ture will be useful for applications like satellite and aircraft-
to-ground based distant imaging, for which atmospheric tur-
bulence is a serious problem. We present the main result
from the ghost imaging experiment performed at the US
Army Research Laboratory �ARL�, namely that the ghost
image is virtually free of the adverse effects of turbulence.
We also highlight the two-photon interference nature of the
ghost imaging as the primary cause of this turbulence-free
effect. We expand on the effects of turbulence on ghost im-
aging in another letter.7

A schematic of the experimental setup is shown in Fig.
1. It is a typical thermal light lensless ghost imaging setup,1

except for the addition of heating elements to produce labo-
ratory atmospheric turbulence. It uses secondary ghost imag-
ing which helps make ghost imaging practical for applica-
tions. In this experiment, turbulence is introduced by adding
heating elements at 550 °C underneath any or all optical
paths as illustrated in Fig. 1. Heating of the air causes tem-
poral and spatial fluctuations on its index of refraction that
makes the classical image of the object jitter about randomly

on the image plane causing a “blurred” picture. As in our
early experiment,1 the light source is a typical chaotic
pseudo-thermal source, which contains a laser beam and a
fast rotating ground glass diffuser. The chaotically scattered
laser beam, with a fairly large size �11 mm diameter� in
transverse dimension, is split into two by a 50%–50% beam-
splitter. One of the beams illuminates an object located at z1,
such as the letters “ARL” shown in Fig. 1. The photons
scattered and reflected from the object are collected and
counted by a “bucket” detector, which is simulated by the
right-half of the charged coupled device �CCD� in Fig. 1.
The other beam propagates to the ghost image plane of z2
=z1�1.4 m and the path from the target to the detectors
over heating elements is �1.7 m. Like our early demonstra-
tion of ghost imaging, placing a CCD array on the ghost
image plane, allows it to capture the ghost image of the
object if its exposure is gated by the bucket detector.1 Our
CCD array imaged the target and reference planes located on
a sheet of paper where one half is glossy white and the other
half contains the target. The scattered and reflected light
from the glossy white half of the paper, which contains the
reference spatial information for the ghost image, is then
captured by the left-half of the high resolution CCD camera
operating in the photon counting regime. The CCD camera is
focused onto the ghost image plane and is gated by the
bucket detector for the generation of the secondary ghost

a�Electronic mail: ronald.meyers1@us.army.mil.

FIG. 1. �Color� �a� Schematic setup of a typical lensless ghost imaging
experiment with thermal light in which significant turbulence is introduced
in its optical paths. Dashed arrows indicate the optical path to the “bucket”
and solid arrows indicate the optical path of the reference image. �b� The
inset depicts typical turbulence structures measured during the experiment.
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image. Analogously, Valencia et al.4 focused light from the
source onto the imaging plane to be measured with a scan-
ning fiber tip. In our special setup each half of the CCD
camera can play the role of an independent classical camera
in its “normal” ungated operation. The hardware circuit and
the software program monitor the outputs of the left-half and
the right-half of the CCD individually, as two independent
classical cameras, and simultaneously to monitor the gated
output of the left-half of the CCD as a ghost camera. The
classical image and the secondary ghost image of the object
were captured and monitored simultaneously when turbu-
lence was introduced to any or to all of the optical paths.

The effect of turbulence on a classical image is easily
seen in Figs. 2�c�–2�e�, in which three sequential classical
image “shots” of the letter “A” were taken by the right-half
of the CCD in its normal operation as a classical camera.
Integrating a number �10 000� of sequential images with an
exposure time of 1 ms results in a blurred image, Fig. 2�b�.
Turbulence is a result of strong stochastic space and time
variations in the fluid properties such as velocity components
ui�x , t� and index of refraction ��x , t�. Our experiments used
realtime imaging, Fig. 1�b�, to extract properties for objec-
tive characterization of the anisotropic inhomogeneous
turbulence.8 Velocity probability density functions, velocity
correlations, �ui�x1 , t1�uj�x2 , t2��, and their time and space
scales8 were computed. The turbulence velocity correlation
space scales were found to be 1–2.5 mm and the turbulence
velocity correlation time scales were 2.5–5 ms. While each
beam distorts and spreads due to turbulence, the point-to-
point correlation between the image plane and the object
plane is maintained. The small space turbulence scales indi-
cate that the reference and bucket beams experience indepen-
dent turbulence deviations, and the small time correlation
scales indicate that the image frames at different times also
experience different turbulence realizations. Optical turbu-
lence is the variability of light propagating through ��x , t�
fluctuations, and is often characterized by the structure
parameter ����x�−��x+r��2�=Cn

2F where F is a scaling
function9 that is often set to r2/3. Cn

2 is a standard means of
characterizing both laboratory and atmospheric optical turbu-
lence and has dimensions of length−2/3, rendering the struc-
ture function dimensionless. Using standard methods9 we de-
termined that the images in Fig. 2 were taken in high
turbulence with Cn

2=1.5�10−12.
This experiment demonstrates that neither the spatial

resolution nor contrast of the ghost image were affected sig-
nificantly by the turbulence present in the bucket and refer-
ence optical paths. Figures 2�a� and 2�b� compare a ghost

image �a� with a simple average image �b� under the same
turbulence conditions as in Figs. 2�c�–2�e�. It is clear that the
ghost imaging resolution surpasses the resolution of the
“average image” in turbulence. In Fig. 3, a ghost image of
“ARL” with the same high turbulence described above is
compared with another ghost image of “ARL” without tur-
bulence. It is difficult to see the difference. Visibilities in
Figs. 3�a� and 3�b� after normalization were 75% for the
nonturbulence case and 33% for the turbulence case. Sub-
tracting out the nearly constant backgrounds in both the tur-
bulence and nonturbulence cases, yielded nearly 100% vis-
ibility. The quality of the ghost image is virtually unaffected
by turbulence even though the turbulence acts to scatter the
energy along the optical paths to the target and detection
planes. Further experiments were performed with exposure
times as short as 1 �s and yielded results similar to those
presented above. Resolution was quantified between Figs.
2�a� and 2�b� by applying a Gaussian point spread function
�PSF� to the initial “A” target to approximate Figs. 2�a� and
2�b�, respectively. PSF standard deviations in each dimen-
sion were 1.6 pixels to match the ghost image of Fig. 2�a�
and 3.2 pixels to approximate the classical average of Fig.
2�b�, which still had unaccounted for aberrations. In sum-
mary, the ghost image appears relatively undistorted by tur-
bulence, i.e., turbulence-free.

The quantum theory of photodetection10 gives a reason-
able interpretation to the turbulence-free ghost imaging of
thermal light. In Glauber’s theory, a joint detection of two
independent point photodetectors measures the probability of
observing a joint-detection event of two photons at space-
time points �r1 , t1� and �r2 , t2�:

G�2��r1,t1;r2,t2� = ��E1
�−�E2

�−�E2
�+�E1

�+��QM�Ensemble, �1�

where Ej
����r j , tj� , j=1,2 are the negative and positive field

operators at �r1 , t1� and �r2 , t2�. We have proven that the
quantum expectation is the result of a superposition1

��E1
�−�E2

�−�E2
�+�E1

�+��QM�Ensemble = �g2���2,z2;�� �g1���1,z1;����

+ g2���2,z2;����g1���1,z1;�� ��2, �2�

where gj��� j ,zj ;�� � is the Green’s function, which propagates
the field from the source to the jth photodetector in the im-
age and object arms.11,12 Equation �2� indicates an interfer-
ence between two quantum amplitudes, corresponding to two
alternatives, different yet indistinguishable, which lead to a
joint photodetection event. This interference involves both
arms of the optical setup as well as two distant photodetec-
tion events at ���1 ,z1� and ���2 ,z2�, respectively. Figure 4
schematically illustrates the two alternatives for a pair of

FIG. 2. �Color online� From left to right: �a� a ghost image of the letter “A,”
�b� an averaged image of the letter “A” followed by three classical image
“shots” of letter “A” with turbulence �c�–�e�. These images were taken
through the bucket detector arm. Notice the turbulence induced jittering and
distortion of the images from one “shot” to another “shot.” Both the ghost
image and the averaged classical image came from the same turbulence. The
ghost image is not adversely effected by the turbulence while the average of
the classical images shows significant degradation.

FIG. 3. �Color online� A ghost image of “ARL” without turbulence �a� is
compared with a ghost image of “ARL” with significant turbulence �b�. In
this measurement turbulence was introduced into all optical paths as shown
in Fig. 1. There is virtually no difference when turbulence is introduced.

111115-2 Meyers, Deacon, and Shih Appl. Phys. Lett. 98, 111115 �2011�

Downloaded 05 Sep 2013 to 158.12.35.63. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions



	  	
160

modes � and �� to produce a joint photodetection event.
Now, we introduce an arbitrary phase disturbance ei�1���1�

into the image arm and another phase disturbance ei�2���2� into
the object arm to simulate the turbulence, where ��1���1� and
��2���2� add random phases onto the radiation at transverse
coordinates ��1 and ��2, respectively. The quantum expectation
is thus

�g2���2,z2;�� �ei��2���2�g1���1,z1;����ei��1���1�

+ g2���2,z2;����ei��2���2�g1���1,z1;�� �ei��1���1��2

= �g2���2,z2;�� �g1���1,z1;����

+ g2���2,z2;����g1���1,z1;�� ��2. �3�

Notice that the phase disturbances introduced by the turbu-
lence have a null effect on the second-order correlation func-
tion G�2����1 ,z1 ;��2 ,z2� of Eq. �1�. The normalized nonfactor-
izable point-to-point image-forming correlation g�2����1 ;��2�
of thermal light is thus turbulence-free. The two-photon sym-
metric wave function conditions established in the theory
show the aberration cancelling effect of turbulence-free
ghost imaging.

As proven earlier1 and demonstrated here in turbulence,
the image forming correlation g�2����1 ;��2� of thermal light is
a nonfactorizable point-to-point intensity-intensity correla-
tion that comes about from quantum superposition of two-
photon amplitudes instead of classical correlation of intensity
fluctuations. See Agarwal et al.13 on nonclassical interfer-
ence. Significantly, the nonlocal nonfactorizable property of
thermal light that we demonstrated could be useful as a po-
tential resource for a quantum information processing ther-
mal qubit.

By comparison, a classical simulation of ghost imaging
was proposed by Gatti et al.,14 in which two classical imag-
ing systems are used to image the speckles of the light source
onto the object plane and the image plane, respectively, to
form a trivial speckle-to-speckle correlation. Under turbu-
lence, the object and image plane speckles would be blurred
in a random manner as would the factorizable speckle-to-
speckle correlation.

In conclusion, we have demonstrated the peculiar
turbulence-free feature of ghost imaging with thermal light,
which can be extremely useful for applications such as dis-
tant imaging. The turbulence-free ghost imaging phenomena
is the result of nonlocal two-photon interference which
cannot be simulated classically by factorizable intensity-
intensity correlations.
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