Mr. Eric Spero
Sciences for Maneuver Campaign
U.S. Army Research Laboratory
Science & Technology enabled air and ground platform capabilities to significantly increase Army:

- Force effectiveness
- Rapid expeditionary global responsiveness in complex environments.

Mobility technologies to enable adaptive vehicle configurations and subsystem architectures critical to the future Army’s:

- Deployment
 - Maneuverability
 - Sustainment

Army Maneuver

Manned ↔ Unmanned
ENERGY & PROPULSION: Exploit innovations in energy sources, storage, generation, conversion, transmission, distribution, and management to provide technologies and configurations to improve operational effectiveness and efficiency of Army platforms ensuring military power projection superiority.

- Energy Storage for Mobility
- Power/Energy Conversion
- Distribution and Transfer
- Intelligent Power

- Fuel Injection & Combustion
- Turbine Engine Efficiency and Sand Tolerance
- Lightweight Hybrid Gears
- ARL-Developed Power Electronics Components
LOGISTICS AND SUSTAINABILITY: Fundamental research to enable the rapid and accurate assessment of health status, usage and readiness of Army platforms, sub-systems, and components to provide unmatched adaptable maneuverability, reliability, affordability, and availability.

Reliability

Mechanism State Awareness (health)

Extremely Lightweight, Adaptive, Durable & Damage Tolerant (XLADD) Structures

Failure Characterization and Precursor Detection & Identification

Damage Indication & Remaining Useful Life (State Awareness) Models
PLATFORM MECHANICS: Fundamental research to enable highly-maneuverable high-speed air and ground vehicle platforms and subsystems for the future Army, ranging from large combat/cargo vehicles to micro-scale devices.
VEHICLE INTELLIGENCE: Focus on fundamental research to enable effective teaming of Soldiers and unmanned vehicles to conduct maneuver and military missions. Centered on enhancing autonomous capabilities of unmanned/ intelligent systems in real world environments.

- Perception
- Intelligence & Control
- Human-Robot Interaction

- Raw Image
- Scene Objects Labeled
- Semantic Labeling of Objects in the Environment
- Learning by Demonstration
- Learning
- Natural Communication
Key Campaign Initiative: Advanced, Electrical Power Technologies and Components

- Improve mission effectiveness of Army platforms through development of energy and power underpinning materials and devices to enable electric-based component technologies.

- Reduce logistics burden through the development of more efficient electrical power generation, distribution, and conversion components and systems.
Key Campaign Initiative: Discover & Advance VTOL Innovations, Novel Concepts, and Ideas (DAVINCI)

- Technologies to enable fielding of next generation VTOL platforms and application to current platforms to produce significantly increased speed without degradation of hover efficiency
- Technologies to enhance maneuverability in complex environments at higher operating speeds
- Next generation micro and small unmanned autonomous air vehicles
Key Campaign Initiative: Force Projection & Augmentation through Intelligent Vehicles

- Army development of autonomous and semi-autonomous operational capabilities to increase lethality and protection, and augment, enable and, in some cases, replace Soldiers, thus freeing them to maneuver and operate to their advantage.

- Technological advances for affordable, interoperable autonomous and semi-autonomous systems that improve effectiveness of Soldiers and units.
Technology Discovery & Innovation for Future Army Intelligent Unmanned Vehicles

Artificial Intelligence
- Semantic Perception
- Machine Learning
- Abstract Reasoning

Human-Machine Interaction
- Cognitive Models
- Human-Machine Communication
- Trust

Multi-Modal Control
- Distributed/Embedded
- Hybrid Mobility/Manipulation

- Cognitive Robotics Lab at APG, MD
- Free Flight Facility at APG, MD
- Indoor Experimentation Facility (Bldg 507) at Adelphi, MD
- Micro-Systems Wind Tunnel at APG, MD
- Robotics Research Facility at Ft. Indiantown Gap, PA

Multi-Disciplinary / Multi-Campaign
Energy & Propulsion

- Power Electronics for Tactical Energy Networks and Mobile Platforms
- Soldier and Small System Energy Harvesting
- Fuel Processing Power Sources
- High-Efficiency Gas Turbine Engine Components
- Tribology and Lubrication Science for High-Performance Power Transmission
- Combustion Sciences for Advanced Propulsion Systems
- Innovative Propulsion Technologies for Unmanned Aircraft Systems
- Probabilistic-Diagnostic Informed Innovations for Power Transmission Lightweighting
- Advanced Power Transfer Components and Concepts

http://www.arl.army.mil/opencampus/
Platform Intelligence

- Meta-Cognition, Self-reflection and Proprioception
- Semantic Spatial Understanding
- Intelligent Vehicle Technology Experimentation
- Human-robot Interaction
- Bot-Language
- Computational Intelligence
- Autonomous Mobile Robot Exploration with an Information-Gain Metric
- Hybrid Training Methods for Visual Classification and Autonomous Navigation
- Reasoning Under Uncertainty
- Size, Weight, Power, and Processing Constrained Sensors & Controls
- Automated Vehicle Routing

http://www.arl.army.mil/opencampus/
Logistics & Sustainability

- Extremely Lightweight, Adaptive, Durable, Damage Tolerant (XLADD) Structures for Future Vertical Lift
- Virtual Risk-informed Agile Maneuver Sustainment (VRAMS)

Platform Mechanics

- Aeromechanics for Rotorcraft and Unmanned Aerial Systems
- Mission-Driven Microsystem Design and Validation
- Mechanics of Handheld Aerial Mobility
- Rotorcraft Capability Assessment and Tradeoff Environment
- Advanced Rotorcraft Aeromechanics Research
- Mobility and Manipulation for Next-Generation Unmanned Systems

http://www.arl.army.mil/opencampus/