MURI Objective

Development of novel situation awareness theories and techniques to obtain an accurate view of the available cyber-assets and to automatically determine the assets required to carry out each mission task

Automatic assessment of **attack damage and determination of possible next moves and mission impact**

Modeling adversary behavior to predict the threat of future attacks to the success of a mission

A semantically rich presentation environment

Scientific/Technical Approaches

- Develop theoretically sound yet practical techniques to automatically analyze network event data to get an up-to-date view of the available cyber-assets
- Develop comprehensive analysis techniques to automatically extract dependency relationships between cyber-missions and cyber-assets
- Extend previous correlation work to associate ongoing attacks and affected cyber-assets to get an accurate understanding of the impact of cyber-attacks
- Develop adversary behavior models to help predict the effects of future attacks launched to prevent successful mission completion
- Leverage novel cognitive science techniques to produce a semantically-rich, easy-to-grasp view of the cyber-mission status

Payoff

- The models, theories, techniques, and tools developed will provide the DoD with a supporting foundation for building a more effective defense against cyber-attacks, especially state-sponsored attacks
- By automating the process of extracting the dependencies between cyber-missions and the needed assets, it will be possible to prioritize attack remediation and optimize human-intensive tasks
- A game-theoretical analysis of attacker actions will enable the construction of forecasts on the nature of the developing threat
- Tailored immersive visualization will enable the efficient evaluation of different courses of action (COAs)